At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the system of equations:
[tex]\[ y = x + 3 \][/tex]
[tex]\[ y = x^2 - 2x - 1 \][/tex]
we need to find the points (x, y) that satisfy both equations simultaneously. Here are the detailed steps:
1. Set the Equations Equal to Each Other:
Since both expressions are equal to \( y \), we can set them equal to each other to find the values of \( x \):
[tex]\[ x + 3 = x^2 - 2x - 1 \][/tex]
2. Rewrite the Equation:
Rearrange the equation to set it to zero:
[tex]\[ x^2 - 2x - x - 1 - 3 = 0 \][/tex]
This simplifies to:
[tex]\[ x^2 - 3x - 4 = 0 \][/tex]
3. Solve the Quadratic Equation:
To solve the quadratic equation \( x^2 - 3x - 4 = 0 \), we can either factorize or use the quadratic formula. This particular quadratic can be factored:
[tex]\[ (x - 4)(x + 1) = 0 \][/tex]
Setting each factor to zero gives us the solutions:
[tex]\[ x - 4 = 0 \quad \Rightarrow \quad x = 4 \][/tex]
[tex]\[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \][/tex]
4. Find Corresponding \( y \)-Values:
Now we need to find the corresponding \( y \)-values for each \( x \):
- For \( x = 4 \):
[tex]\[ y = 4 + 3 = 7 \][/tex]
So, one solution is \( (4, 7) \).
- For \( x = -1 \):
[tex]\[ y = -1 + 3 = 2 \][/tex]
So, another solution is \( (-1, 2) \).
5. List the Solutions:
The solutions to the system are the points where the lines intersect. These points are:
[tex]\[ (-1, 2) \][/tex]
[tex]\[ (4, 7) \][/tex]
6. Compare with Options:
Given the options:
- A: \((1, 4)\) and \((-4, -1)\)
- B: \((-1, 4)\) and \((4, -1)\)
- C: \((-1, 7)\) and \((4, 2)\)
- D: \((-1, 2)\) and \((4, 7)\)
We see that option D: \((-1, 2)\) and \((4, 7)\) matches our solutions perfectly.
Thus, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
[tex]\[ y = x + 3 \][/tex]
[tex]\[ y = x^2 - 2x - 1 \][/tex]
we need to find the points (x, y) that satisfy both equations simultaneously. Here are the detailed steps:
1. Set the Equations Equal to Each Other:
Since both expressions are equal to \( y \), we can set them equal to each other to find the values of \( x \):
[tex]\[ x + 3 = x^2 - 2x - 1 \][/tex]
2. Rewrite the Equation:
Rearrange the equation to set it to zero:
[tex]\[ x^2 - 2x - x - 1 - 3 = 0 \][/tex]
This simplifies to:
[tex]\[ x^2 - 3x - 4 = 0 \][/tex]
3. Solve the Quadratic Equation:
To solve the quadratic equation \( x^2 - 3x - 4 = 0 \), we can either factorize or use the quadratic formula. This particular quadratic can be factored:
[tex]\[ (x - 4)(x + 1) = 0 \][/tex]
Setting each factor to zero gives us the solutions:
[tex]\[ x - 4 = 0 \quad \Rightarrow \quad x = 4 \][/tex]
[tex]\[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \][/tex]
4. Find Corresponding \( y \)-Values:
Now we need to find the corresponding \( y \)-values for each \( x \):
- For \( x = 4 \):
[tex]\[ y = 4 + 3 = 7 \][/tex]
So, one solution is \( (4, 7) \).
- For \( x = -1 \):
[tex]\[ y = -1 + 3 = 2 \][/tex]
So, another solution is \( (-1, 2) \).
5. List the Solutions:
The solutions to the system are the points where the lines intersect. These points are:
[tex]\[ (-1, 2) \][/tex]
[tex]\[ (4, 7) \][/tex]
6. Compare with Options:
Given the options:
- A: \((1, 4)\) and \((-4, -1)\)
- B: \((-1, 4)\) and \((4, -1)\)
- C: \((-1, 7)\) and \((4, 2)\)
- D: \((-1, 2)\) and \((4, 7)\)
We see that option D: \((-1, 2)\) and \((4, 7)\) matches our solutions perfectly.
Thus, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.