Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Write out the first 3 values for the summation ∑[tex]\frac{45}{n=1}[/tex] (3n-2). Then calculate the complete sum by rewriting it using the arithmetic sum formula.

Sagot :

Answer:

  • the first 3 values = 1, 4, 7
  • the sum = 3015

Step-by-step explanation:

To find the first 3 values for the summation, just substitute the variable n with {1, 2, 3}:

[tex]\boxed{U_n=3n-2}[/tex]

  • [tex]U_1=3(1)-2=1[/tex]
  • [tex]U_2=3(2)-2=4[/tex]
  • [tex]U_3=3(3)-2=7[/tex]

Therefore, the first 3 values are {1, 4, 7}

From the question and the 3 values above, we can find that:

  • [tex]n=45[/tex]
  • [tex]U_1=1[/tex]
  • [tex]d=U_2-U_1=4-1=3[/tex]

To find the sum of this arithmetic sequence, we can use the arithmetic sum formula:

[tex]\boxed{S_n=\frac{n}{2} (U_1+U_n)}[/tex]

First we have to find the [tex]U_n[/tex] in order to calculate the sum.

[tex]U_n=3n-2[/tex]

[tex]U_{45}=3(45)-2[/tex]

[tex]U_{45}=133[/tex]

Now, we can find the sum:

[tex]\begin{aligned} S_n&=\frac{n}{2} (U_1+U_n)\\\\&=\frac{45}{2}(1+133)\\\\&=\bf 3015 \end{aligned}[/tex]