Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the problem, we need to determine the probability that the third digit in the locker combination is 7, given that the first two digits are 9 and 8, and that digits cannot be repeated. Let's break this down step-by-step:
1. Identify the given information:
- The first digit is 9.
- The second digit is 8.
- We need to find the probability that the third digit is 7.
- Digits cannot be repeated, and only nonzero digits (1 through 9) can be used.
2. Determine the total nonzero digits available:
- The nonzero digits in this context are 1 through 9, totaling 9 digits.
3. Calculate the digits already chosen:
- We have already used the digits 9 and 8 for the first two positions.
4. Find the remaining digits available for the third position:
- Since 9 and 8 are already used, they cannot be chosen again.
- This leaves us with the digits: 1, 2, 3, 4, 5, 6, 7.
5. Count the remaining available digits:
- There are 7 remaining digits (1 through 7).
6. Determine the favorable outcome:
- The favorable outcome is choosing the digit 7 for the third position.
- There is only one favorable outcome (choosing the digit 7).
7. Calculate the probability:
- Probability is given by the number of favorable outcomes divided by the total number of possible outcomes.
- In this scenario, there is 1 favorable outcome (choosing 7) out of 7 remaining possible digits.
The probability can be expressed as:
[tex]\[ \text{Probability} = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{1}{7} \][/tex]
Therefore, the probability that the third digit is 7 is \(\frac{1}{7}\).
Thus, the correct answer is [tex]\( \boxed{\frac{1}{7}} \)[/tex], which corresponds to option D.
1. Identify the given information:
- The first digit is 9.
- The second digit is 8.
- We need to find the probability that the third digit is 7.
- Digits cannot be repeated, and only nonzero digits (1 through 9) can be used.
2. Determine the total nonzero digits available:
- The nonzero digits in this context are 1 through 9, totaling 9 digits.
3. Calculate the digits already chosen:
- We have already used the digits 9 and 8 for the first two positions.
4. Find the remaining digits available for the third position:
- Since 9 and 8 are already used, they cannot be chosen again.
- This leaves us with the digits: 1, 2, 3, 4, 5, 6, 7.
5. Count the remaining available digits:
- There are 7 remaining digits (1 through 7).
6. Determine the favorable outcome:
- The favorable outcome is choosing the digit 7 for the third position.
- There is only one favorable outcome (choosing the digit 7).
7. Calculate the probability:
- Probability is given by the number of favorable outcomes divided by the total number of possible outcomes.
- In this scenario, there is 1 favorable outcome (choosing 7) out of 7 remaining possible digits.
The probability can be expressed as:
[tex]\[ \text{Probability} = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{1}{7} \][/tex]
Therefore, the probability that the third digit is 7 is \(\frac{1}{7}\).
Thus, the correct answer is [tex]\( \boxed{\frac{1}{7}} \)[/tex], which corresponds to option D.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.