Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's analyze the given mathematical expression step-by-step to determine which statements are true:
The expression given is:
[tex]\[ 5x^3 - 6x^2 - \frac{25}{y} + 18 \][/tex]
Step 1: Understand the expression structure
The expression consists of the following parts:
1. \( 5x^3 \) — a cubic term in \( x \), with a coefficient of 5.
2. \( -6x^2 \) — a quadratic term in \( x \), with a coefficient of -6.
3. \( -\frac{25}{y} \) — a term involving \( y \), creating a ratio where -25 is divided by \( y \).
4. \( +18 \) — a constant term.
Step 2: Analyze each statement
Statement A: "The entire expression is a difference."
- To qualify as a difference, the expression should represent subtraction only. The expression includes both addition and subtraction (evident from the terms \( +18 \) and \( -\frac{25}{y} \)), so this expression is not purely a difference.
- Statement A is false.
Statement B: "The term \( -\frac{25}{y} \) is a ratio."
- A ratio involves division, and \( -\frac{25}{y} \) clearly indicates \(-25\) divided by \( y \).
- Statement B is true.
Statement C: "There are three terms."
- Let's count the terms in the expression. We have four distinct parts: \( 5x^3 \), \( -6x^2 \), \( -\frac{25}{y} \), and \( +18 \).
- Statement C is false.
Statement D: "There are four terms."
- As already mentioned, the expression includes four distinct parts: \( 5x^3 \), \( -6x^2 \), \( -\frac{25}{y} \), and \( +18 \).
- Statement D is true.
Conclusion
The true statements are:
- Statement B: The term \( -\frac{25}{y} \) is a ratio.
- Statement D: There are four terms.
Thus, the correct pair of true statements are:
[tex]\[ \boxed{\text{B and D}} \][/tex]
The expression given is:
[tex]\[ 5x^3 - 6x^2 - \frac{25}{y} + 18 \][/tex]
Step 1: Understand the expression structure
The expression consists of the following parts:
1. \( 5x^3 \) — a cubic term in \( x \), with a coefficient of 5.
2. \( -6x^2 \) — a quadratic term in \( x \), with a coefficient of -6.
3. \( -\frac{25}{y} \) — a term involving \( y \), creating a ratio where -25 is divided by \( y \).
4. \( +18 \) — a constant term.
Step 2: Analyze each statement
Statement A: "The entire expression is a difference."
- To qualify as a difference, the expression should represent subtraction only. The expression includes both addition and subtraction (evident from the terms \( +18 \) and \( -\frac{25}{y} \)), so this expression is not purely a difference.
- Statement A is false.
Statement B: "The term \( -\frac{25}{y} \) is a ratio."
- A ratio involves division, and \( -\frac{25}{y} \) clearly indicates \(-25\) divided by \( y \).
- Statement B is true.
Statement C: "There are three terms."
- Let's count the terms in the expression. We have four distinct parts: \( 5x^3 \), \( -6x^2 \), \( -\frac{25}{y} \), and \( +18 \).
- Statement C is false.
Statement D: "There are four terms."
- As already mentioned, the expression includes four distinct parts: \( 5x^3 \), \( -6x^2 \), \( -\frac{25}{y} \), and \( +18 \).
- Statement D is true.
Conclusion
The true statements are:
- Statement B: The term \( -\frac{25}{y} \) is a ratio.
- Statement D: There are four terms.
Thus, the correct pair of true statements are:
[tex]\[ \boxed{\text{B and D}} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.