Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's break down the solution to this problem step by step:
1. Initial Count of Marbles:
- White marbles: 3
- Orange marble: 1
- Green marbles: 2
Total initial marbles: \(3 + 1 + 2 = 6\)
2. Marble Drawn:
Anna draws a white marble. Since she does not replace it, we need to update our count:
- Drawn white marbles: 1
3. Remaining Marbles:
After Anna draws one white marble, the counts are as follows:
- White marbles: \(3 - 1 = 2\)
- Orange marble: 1 (no change)
- Green marbles: 2 (no change)
Total remaining marbles: \(2 + 1 + 2 = 5\)
4. Probability Calculation:
We are asked for the probability of drawing a green marble next. The count of remaining green marbles is 2, and the total remaining marbles is 5.
Therefore, the probability \(P\) of drawing a green marble is given by:
[tex]\[ P(\text{green marble}) = \frac{\text{number of green marbles}}{\text{total remaining marbles}} = \frac{2}{5} \][/tex]
Thus, the probability of drawing a green marble next is \(\frac{2}{5}\).
So the correct answer is [tex]\( \boxed{\frac{2}{5}} \)[/tex].
1. Initial Count of Marbles:
- White marbles: 3
- Orange marble: 1
- Green marbles: 2
Total initial marbles: \(3 + 1 + 2 = 6\)
2. Marble Drawn:
Anna draws a white marble. Since she does not replace it, we need to update our count:
- Drawn white marbles: 1
3. Remaining Marbles:
After Anna draws one white marble, the counts are as follows:
- White marbles: \(3 - 1 = 2\)
- Orange marble: 1 (no change)
- Green marbles: 2 (no change)
Total remaining marbles: \(2 + 1 + 2 = 5\)
4. Probability Calculation:
We are asked for the probability of drawing a green marble next. The count of remaining green marbles is 2, and the total remaining marbles is 5.
Therefore, the probability \(P\) of drawing a green marble is given by:
[tex]\[ P(\text{green marble}) = \frac{\text{number of green marbles}}{\text{total remaining marbles}} = \frac{2}{5} \][/tex]
Thus, the probability of drawing a green marble next is \(\frac{2}{5}\).
So the correct answer is [tex]\( \boxed{\frac{2}{5}} \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.