Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the correct expression that represents the volume of the pyramid, let's go through the steps clearly:
### Step-by-Step Solution
1. Identify Given Values:
- The area of the base of the pyramid, \( A \), is \( 5.2 \, \text{cm}^2 \).
- The height of the pyramid, \( h \), is given in centimeters (cm).
2. Recall the Volume Formula for a Pyramid:
The volume \( V \) of a pyramid is given by the formula:
[tex]\[ V = \frac{1}{3} \times \text{(Base Area)} \times \text{Height} \][/tex]
3. Substitute the Given Values into the Formula:
- Base Area, \( A = 5.2 \, \text{cm}^2 \)
- Height, \( h \, \text{cm} \)
Therefore, substituting these values into the volume formula:
[tex]\[ V = \frac{1}{3} \times 5.2 \, \text{cm}^2 \times h \, \text{cm} \][/tex]
4. Combine the Terms:
Combining the terms, we get:
[tex]\[ V = \frac{1}{3} \times 5.2 \times h \, \text{cm}^3 \][/tex]
This matches the option:
[tex]\[ \boxed{\frac{1}{3}(5.2) h \, \text{cm}^3} \][/tex]
### Conclusion:
The expression that correctly represents the volume of the pyramid is:
[tex]\[ \frac{1}{3}(5.2) h \, \text{cm}^3 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{1}{3}(5.2) h \, \text{cm}^3} \][/tex]
### Step-by-Step Solution
1. Identify Given Values:
- The area of the base of the pyramid, \( A \), is \( 5.2 \, \text{cm}^2 \).
- The height of the pyramid, \( h \), is given in centimeters (cm).
2. Recall the Volume Formula for a Pyramid:
The volume \( V \) of a pyramid is given by the formula:
[tex]\[ V = \frac{1}{3} \times \text{(Base Area)} \times \text{Height} \][/tex]
3. Substitute the Given Values into the Formula:
- Base Area, \( A = 5.2 \, \text{cm}^2 \)
- Height, \( h \, \text{cm} \)
Therefore, substituting these values into the volume formula:
[tex]\[ V = \frac{1}{3} \times 5.2 \, \text{cm}^2 \times h \, \text{cm} \][/tex]
4. Combine the Terms:
Combining the terms, we get:
[tex]\[ V = \frac{1}{3} \times 5.2 \times h \, \text{cm}^3 \][/tex]
This matches the option:
[tex]\[ \boxed{\frac{1}{3}(5.2) h \, \text{cm}^3} \][/tex]
### Conclusion:
The expression that correctly represents the volume of the pyramid is:
[tex]\[ \frac{1}{3}(5.2) h \, \text{cm}^3 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{1}{3}(5.2) h \, \text{cm}^3} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.