Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the value of \( k \) that makes the equation \((5a^2 b^3)(6a^k b) = 30a^6 b^4\) true, let's break it down step-by-step.
Given equation:
[tex]\[ (5a^2 b^3)(6a^k b) = 30a^6 b^4 \][/tex]
1. Combine the numerical coefficients:
[tex]\[ 5 \times 6 = 30 \][/tex]
2. Combine the powers of \( a \):
The product on the left side involving \( a \) is:
[tex]\[ a^2 \times a^k = a^{2+k} \][/tex]
The right side of the equation has \( a^6 \).
Therefore, we set the exponents of \( a \) equal to each other:
[tex]\[ 2 + k = 6 \][/tex]
Solving for \( k \):
[tex]\[ k = 6 - 2 \][/tex]
[tex]\[ k = 4 \][/tex]
3. Combine the powers of \( b \):
The product on the left side involving \( b \) is:
[tex]\[ b^3 \times b = b^{3+1} = b^4 \][/tex]
The right side of the equation also has \( b^4 \), so this matches perfectly.
Thus, all parts of the equation balance correctly when \( k \) is:
[tex]\[ k = 4 \][/tex]
Hence, the value of [tex]\( k \)[/tex] that makes the equation true is 4.
Given equation:
[tex]\[ (5a^2 b^3)(6a^k b) = 30a^6 b^4 \][/tex]
1. Combine the numerical coefficients:
[tex]\[ 5 \times 6 = 30 \][/tex]
2. Combine the powers of \( a \):
The product on the left side involving \( a \) is:
[tex]\[ a^2 \times a^k = a^{2+k} \][/tex]
The right side of the equation has \( a^6 \).
Therefore, we set the exponents of \( a \) equal to each other:
[tex]\[ 2 + k = 6 \][/tex]
Solving for \( k \):
[tex]\[ k = 6 - 2 \][/tex]
[tex]\[ k = 4 \][/tex]
3. Combine the powers of \( b \):
The product on the left side involving \( b \) is:
[tex]\[ b^3 \times b = b^{3+1} = b^4 \][/tex]
The right side of the equation also has \( b^4 \), so this matches perfectly.
Thus, all parts of the equation balance correctly when \( k \) is:
[tex]\[ k = 4 \][/tex]
Hence, the value of [tex]\( k \)[/tex] that makes the equation true is 4.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.