poopey
Answered

Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

What is the product?

[tex]\[
\left(-6 a^3 b + 2 a b^2\right)\left(5 a^2 - 2 a b^2 - b\right)
\][/tex]

A. \(-30 a^6 b + 12 a^3 b^2 + 6 a^3 b + 10 a^2 b^2 - 4 a b^4 - 2 a b^2\)

B. \(-30 a^5 b + 12 a^4 b^3 + 16 a^3 b^2 - 4 a^2 b^4 - 2 a b^3\)

C. \(30 a^5 b - 12 a^4 b^3 + 4 a^3 b^2 - 4 a^2 b^4 - 2 a b^3\)

D. [tex]\(30 a^6 b - 12 a^3 b^2 - 6 a^3 b + 10 a^2 b^2 - 4 a b^4 - 2 a b^2\)[/tex]


Sagot :

To find the product of the two expressions \( (-6 a^3 b + 2 a b^2)(5 a^2 - 2 a b^2 - b) \), we need to multiply each term in the first expression by each term in the second expression. Let's break it down step-by-step:

1. Multiply \(-6 a^3 b\) by each term in \( 5 a^2 - 2 a b^2 - b \):
- \((-6 a^3 b) \cdot (5 a^2) = -30 a^5 b \)
- \((-6 a^3 b) \cdot (-2 a b^2) = 12 a^4 b^3 \)
- \((-6 a^3 b) \cdot (-b) = 6 a^3 b^2 \)

2. Multiply \(2 a b^2\) by each term in \(5 a^2 - 2 a b^2 - b\):
- \((2 a b^2) \cdot (5 a^2) = 10 a^3 b^2\)
- \((2 a b^2) \cdot (-2 a b^2) = -4 a^2 b^4\)
- \((2 a b^2) \cdot (-b) = -2 a b^3\)

3. Add all these terms together to get the final expanded expression:
- \( -30 a^5 b \)
- \( + 12 a^4 b^3 \)
- \( + 6 a^3 b^2 \)
- \( + 10 a^3 b^2 \)
- \( -4 a^2 b^4 \)
- \( -2 a b^3 \)

4. Combine like terms:
- \(6 a^3 b^2 + 10 a^3 b^2 = 16 a^3 b^2 \)

Therefore, the final product is:
[tex]\[ -30 a^5 b + 12 a^4 b^3 + 16 a^3 b^2 - 4 a^2 b^4 - 2 a b^3 \][/tex]

Comparing this with the given possible answers, we find that the correct answer is:
[tex]\[ -30 a^5 b + 12 a^4 b^3 + 16 a^3 b^2 - 4 a^2 b^4 - 2 a b^3 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.