Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's analyze the given scenario and determine the truth values of the statements provided:
1. Total number of marbles in the bag:
- Red marbles: 3
- Blue marbles: 5
- Violet marbles: 2
- Total marbles: \(3 + 5 + 2 = 10\)
2. Experimental probabilities:
- The frequency of choosing a blue marble is 5 out of 10 draws.
- Experimental probability of drawing blue:
[tex]\[ \text{Probability} = \frac{5}{5 + 1 + 4} = \frac{5}{10} = 0.5 \][/tex]
- The frequency of choosing a red marble is 1 out of 10 draws.
- Experimental probability of drawing red:
[tex]\[ \text{Probability} = \frac{1}{5 + 1 + 4} = \frac{1}{10} = 0.1 \][/tex]
- The frequency of choosing a violet marble is 4 out of 10 draws.
- Experimental probability of drawing violet:
[tex]\[ \text{Probability} = \frac{4}{5 + 1 + 4} = \frac{4}{10} = 0.4 \][/tex]
3. Theoretical probabilities:
- The probability of drawing a blue marble:
[tex]\[ \text{Probability} = \frac{\text{Number of blue marbles}}{\text{Total number of marbles}} = \frac{5}{10} = 0.5 \][/tex]
- The probability of drawing a red marble:
[tex]\[ \text{Probability} = \frac{\text{Number of red marbles}}{\text{Total number of marbles}} = \frac{3}{10} = 0.3 \][/tex]
- The probability of drawing a violet marble:
[tex]\[ \text{Probability} = \frac{\text{Number of violet marbles}}{\text{Total number of marbles}} = \frac{2}{10} = 0.2 \][/tex]
Now, let's evaluate the statements:
Statement A: The experimental probability of drawing blue is \( \frac{1}{2} \).
- From the experimental probability calculation, we found it to be 0.5. This is equivalent to \( \frac{1}{2} \).
- True
Statement B: The experimental probability of drawing red is 1.
- The experimental probability of drawing red was calculated to be 0.1.
- False
Statement C: The theoretical probability of drawing red is \( \frac{1}{10} \).
- The theoretical probability of drawing red was calculated to be 0.3.
- False
Statement D: The theoretical probability of drawing violet is 0.
- The theoretical probability of drawing violet was calculated to be 0.2.
- False
Based on the analysis, the true statement is A.
1. Total number of marbles in the bag:
- Red marbles: 3
- Blue marbles: 5
- Violet marbles: 2
- Total marbles: \(3 + 5 + 2 = 10\)
2. Experimental probabilities:
- The frequency of choosing a blue marble is 5 out of 10 draws.
- Experimental probability of drawing blue:
[tex]\[ \text{Probability} = \frac{5}{5 + 1 + 4} = \frac{5}{10} = 0.5 \][/tex]
- The frequency of choosing a red marble is 1 out of 10 draws.
- Experimental probability of drawing red:
[tex]\[ \text{Probability} = \frac{1}{5 + 1 + 4} = \frac{1}{10} = 0.1 \][/tex]
- The frequency of choosing a violet marble is 4 out of 10 draws.
- Experimental probability of drawing violet:
[tex]\[ \text{Probability} = \frac{4}{5 + 1 + 4} = \frac{4}{10} = 0.4 \][/tex]
3. Theoretical probabilities:
- The probability of drawing a blue marble:
[tex]\[ \text{Probability} = \frac{\text{Number of blue marbles}}{\text{Total number of marbles}} = \frac{5}{10} = 0.5 \][/tex]
- The probability of drawing a red marble:
[tex]\[ \text{Probability} = \frac{\text{Number of red marbles}}{\text{Total number of marbles}} = \frac{3}{10} = 0.3 \][/tex]
- The probability of drawing a violet marble:
[tex]\[ \text{Probability} = \frac{\text{Number of violet marbles}}{\text{Total number of marbles}} = \frac{2}{10} = 0.2 \][/tex]
Now, let's evaluate the statements:
Statement A: The experimental probability of drawing blue is \( \frac{1}{2} \).
- From the experimental probability calculation, we found it to be 0.5. This is equivalent to \( \frac{1}{2} \).
- True
Statement B: The experimental probability of drawing red is 1.
- The experimental probability of drawing red was calculated to be 0.1.
- False
Statement C: The theoretical probability of drawing red is \( \frac{1}{10} \).
- The theoretical probability of drawing red was calculated to be 0.3.
- False
Statement D: The theoretical probability of drawing violet is 0.
- The theoretical probability of drawing violet was calculated to be 0.2.
- False
Based on the analysis, the true statement is A.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.