Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To factor the polynomial \(2x^2 + 6x - 80\) completely, let's go through the steps methodically.
1. Identify the polynomial:
\(2x^2 + 6x - 80\)
2. Look for common factors:
In this case, all the terms do not have a common numerical factor other than 1, and all terms contain \(x\).
3. Attempt to factor by grouping:
We'll use the method of splitting the middle term. We need two numbers that multiply to \(2 \cdot (-80) = -160\) and add up to \(6\).
The pair that fits is \(16\) and \(-10\) because:
[tex]\[16 \times (-10) = -160\][/tex]
[tex]\[16 + (-10) = 6\][/tex]
4. Rewrite the polynomial by splitting the middle term:
[tex]\[2x^2 + 16x - 10x - 80\][/tex]
5. Group and factor each part:
Group the terms to create common factors:
[tex]\[2x^2 + 16x - 10x - 80 = 2x(x + 8) - 10(x + 8)\][/tex]
6. Factor out the common binomial factor:
We observe a common binomial factor \((x + 8)\):
[tex]\[2x(x + 8) - 10(x + 8) = (2x - 10)(x + 8)\][/tex]
7. Simplify further:
Notice that \(2x - 10\) can be factored further as:
[tex]\[2(x - 5)\][/tex]
8. Combine the factors:
Combine these factored parts:
[tex]\[2(x - 5)(x + 8)\][/tex]
Thus, the polynomial \(2x^2 + 6x - 80\) factors completely to \(2(x - 5)(x + 8)\).
So, the correct option among the given choices is:
[tex]\[ \boxed{2(x - 5)(x + 8)} \][/tex]
1. Identify the polynomial:
\(2x^2 + 6x - 80\)
2. Look for common factors:
In this case, all the terms do not have a common numerical factor other than 1, and all terms contain \(x\).
3. Attempt to factor by grouping:
We'll use the method of splitting the middle term. We need two numbers that multiply to \(2 \cdot (-80) = -160\) and add up to \(6\).
The pair that fits is \(16\) and \(-10\) because:
[tex]\[16 \times (-10) = -160\][/tex]
[tex]\[16 + (-10) = 6\][/tex]
4. Rewrite the polynomial by splitting the middle term:
[tex]\[2x^2 + 16x - 10x - 80\][/tex]
5. Group and factor each part:
Group the terms to create common factors:
[tex]\[2x^2 + 16x - 10x - 80 = 2x(x + 8) - 10(x + 8)\][/tex]
6. Factor out the common binomial factor:
We observe a common binomial factor \((x + 8)\):
[tex]\[2x(x + 8) - 10(x + 8) = (2x - 10)(x + 8)\][/tex]
7. Simplify further:
Notice that \(2x - 10\) can be factored further as:
[tex]\[2(x - 5)\][/tex]
8. Combine the factors:
Combine these factored parts:
[tex]\[2(x - 5)(x + 8)\][/tex]
Thus, the polynomial \(2x^2 + 6x - 80\) factors completely to \(2(x - 5)(x + 8)\).
So, the correct option among the given choices is:
[tex]\[ \boxed{2(x - 5)(x + 8)} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.