Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the problem of dividing the expression \((20 x^8 y^3 - 12 x^5 y^2) \div (-4 x^2 y)\), we will break it down term by term.
### Step-by-Step Solution:
1. Divide Each Term Separately:
Let's start by dividing each term in the numerator by the denominator.
#### Term 1: \(\frac{20 x^8 y^3}{-4 x^2 y}\)
- Coefficients:
[tex]\[ \frac{20}{-4} = -5 \][/tex]
- Variables:
[tex]\[ x^8 \div x^2 = x^{8-2} = x^6 \][/tex]
[tex]\[ y^3 \div y = y^{3-1} = y^2 \][/tex]
- Combine:
[tex]\[ \frac{20 x^8 y^3}{-4 x^2 y} = -5 x^6 y^2 \][/tex]
#### Term 2: \(\frac{-12 x^5 y^2}{-4 x^2 y}\)
- Coefficients:
[tex]\[ \frac{-12}{-4} = 3 \][/tex]
- Variables:
[tex]\[ x^5 \div x^2 = x^{5-2} = x^3 \][/tex]
[tex]\[ y^2 \div y = y^{2-1} = y \][/tex]
- Combine:
[tex]\[ \frac{-12 x^5 y^2}{-4 x^2 y} = 3 x^3 y \][/tex]
2. Combine the Results:
Now that we have the simplified forms of each term, we combine them:
[tex]\[ -5 x^6 y^2 + 3 x^3 y \][/tex]
### Final Expression:
Thus, the result of dividing \((20 x^8 y^3 - 12 x^5 y^2) \div (-4 x^2 y)\) is:
[tex]\[ -5 x^6 y^2 + 3 x^3 y \][/tex]
Among the options provided:
- \(-5 x^6 y^2 + 3 x^3 y\) matches our solution.
So, the correct answer is:
[tex]\[ \boxed{-5 x^6 y^2 + 3 x^3 y} \][/tex]
### Step-by-Step Solution:
1. Divide Each Term Separately:
Let's start by dividing each term in the numerator by the denominator.
#### Term 1: \(\frac{20 x^8 y^3}{-4 x^2 y}\)
- Coefficients:
[tex]\[ \frac{20}{-4} = -5 \][/tex]
- Variables:
[tex]\[ x^8 \div x^2 = x^{8-2} = x^6 \][/tex]
[tex]\[ y^3 \div y = y^{3-1} = y^2 \][/tex]
- Combine:
[tex]\[ \frac{20 x^8 y^3}{-4 x^2 y} = -5 x^6 y^2 \][/tex]
#### Term 2: \(\frac{-12 x^5 y^2}{-4 x^2 y}\)
- Coefficients:
[tex]\[ \frac{-12}{-4} = 3 \][/tex]
- Variables:
[tex]\[ x^5 \div x^2 = x^{5-2} = x^3 \][/tex]
[tex]\[ y^2 \div y = y^{2-1} = y \][/tex]
- Combine:
[tex]\[ \frac{-12 x^5 y^2}{-4 x^2 y} = 3 x^3 y \][/tex]
2. Combine the Results:
Now that we have the simplified forms of each term, we combine them:
[tex]\[ -5 x^6 y^2 + 3 x^3 y \][/tex]
### Final Expression:
Thus, the result of dividing \((20 x^8 y^3 - 12 x^5 y^2) \div (-4 x^2 y)\) is:
[tex]\[ -5 x^6 y^2 + 3 x^3 y \][/tex]
Among the options provided:
- \(-5 x^6 y^2 + 3 x^3 y\) matches our solution.
So, the correct answer is:
[tex]\[ \boxed{-5 x^6 y^2 + 3 x^3 y} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.