At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which of the given points lies on the graph of the equation \( y = 2x + 6 \), we will check each point by substituting its \( x \) and \( y \) values into the equation and seeing if the equation holds true.
Let's examine each point step-by-step:
Option A: (0, 8)
1. Substitute \( x = 0 \) into the equation \( y = 2x + 6 \):
[tex]\[ y = 2(0) + 6 = 0 + 6 = 6 \][/tex]
2. Check if \( y = 8 \):
[tex]\[ 6 \neq 8 \][/tex]
Thus, point (0, 8) does not lie on the graph.
Option B: (-1, 4)
1. Substitute \( x = -1 \) into the equation \( y = 2x + 6 \):
[tex]\[ y = 2(-1) + 6 = -2 + 6 = 4 \][/tex]
2. Check if \( y = 4 \):
[tex]\[ 4 = 4 \][/tex]
Thus, point (-1, 4) lies on the graph of the equation.
Option C: (1, 6)
1. Substitute \( x = 1 \) into the equation \( y = 2x + 6 \):
[tex]\[ y = 2(1) + 6 = 2 + 6 = 8 \][/tex]
2. Check if \( y = 6 \):
[tex]\[ 8 \neq 6 \][/tex]
Thus, point (1, 6) does not lie on the graph.
Option D: (2, -6)
1. Substitute \( x = 2 \) into the equation \( y = 2x + 6 \):
[tex]\[ y = 2(2) + 6 = 4 + 6 = 10 \][/tex]
2. Check if \( y = -6 \):
[tex]\[ 10 \neq -6 \][/tex]
Thus, point (2, -6) does not lie on the graph.
From this analysis, the point that lies on the graph of the equation \( y = 2x + 6 \) is:
[tex]\[ \boxed{(-1, 4)} \][/tex]
Therefore, the correct answer is option B: [tex]\((-1, 4)\)[/tex].
Let's examine each point step-by-step:
Option A: (0, 8)
1. Substitute \( x = 0 \) into the equation \( y = 2x + 6 \):
[tex]\[ y = 2(0) + 6 = 0 + 6 = 6 \][/tex]
2. Check if \( y = 8 \):
[tex]\[ 6 \neq 8 \][/tex]
Thus, point (0, 8) does not lie on the graph.
Option B: (-1, 4)
1. Substitute \( x = -1 \) into the equation \( y = 2x + 6 \):
[tex]\[ y = 2(-1) + 6 = -2 + 6 = 4 \][/tex]
2. Check if \( y = 4 \):
[tex]\[ 4 = 4 \][/tex]
Thus, point (-1, 4) lies on the graph of the equation.
Option C: (1, 6)
1. Substitute \( x = 1 \) into the equation \( y = 2x + 6 \):
[tex]\[ y = 2(1) + 6 = 2 + 6 = 8 \][/tex]
2. Check if \( y = 6 \):
[tex]\[ 8 \neq 6 \][/tex]
Thus, point (1, 6) does not lie on the graph.
Option D: (2, -6)
1. Substitute \( x = 2 \) into the equation \( y = 2x + 6 \):
[tex]\[ y = 2(2) + 6 = 4 + 6 = 10 \][/tex]
2. Check if \( y = -6 \):
[tex]\[ 10 \neq -6 \][/tex]
Thus, point (2, -6) does not lie on the graph.
From this analysis, the point that lies on the graph of the equation \( y = 2x + 6 \) is:
[tex]\[ \boxed{(-1, 4)} \][/tex]
Therefore, the correct answer is option B: [tex]\((-1, 4)\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.