Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To plot the graph of the function \( y = -3x - 1 \) from \( x = -2 \) to \( x = 2 \), let's follow a step-by-step approach to understand how the graph would look.
### Step-by-Step Solution:
1. Define the function:
The given function is:
[tex]\[ y = -3x - 1 \][/tex]
2. Determine the range of \( x \):
We need to plot the graph for \( x \) values ranging from \( -2 \) to \( 2 \).
3. Calculate corresponding \( y \)-values for specific \( x \)-values:
Here, we will calculate \( y \)-values for some key \( x \)-values within the given range.
- For \( x = -2 \):
[tex]\[ y = -3(-2) - 1 = 6 - 1 = 5 \][/tex]
- For \( x = -1 \):
[tex]\[ y = -3(-1) - 1 = 3 - 1 = 2 \][/tex]
- For \( x = 0 \):
[tex]\[ y = -3(0) - 1 = 0 - 1 = -1 \][/tex]
- For \( x = 1 \):
[tex]\[ y = -3(1) - 1 = -3 - 1 = -4 \][/tex]
- For \( x = 2 \):
[tex]\[ y = -3(2) - 1 = -6 - 1 = -7 \][/tex]
4. Plot the points:
We have the following points \((x, y)\):
[tex]\[ (-2, 5), (-1, 2), (0, -1), (1, -4), (2, -7) \][/tex]
5. Draw the straight line:
Since the equation \( y = -3x - 1 \) is a linear equation, which means the graph will be a straight line passing through the points we have calculated above.
6. Graphical representation:
- Label the x-axis \( x \) and the y-axis \( y \).
- Plot the calculated points on the coordinate plane.
- Draw a straight line passing through these points to represent the equation.
Here is a rough sketch of how the graph should look:
```
7 | .
6 | .
5 | .
4 |
3 |
2 | .
1 |
0 | .
-1 | .
-2 |
-3 |
-4 | .
-5 |
-6 |
-7 | .
-8 |_________________________
-2 -1 0 1 2
```
Here's a summary of the coordinates plotted:
- \((-2, 5)\)
- \((-1, 2)\)
- \((0, -1)\)
- \((1, -4)\)
- \((2, -7)\)
Connect these points with a straight line, and you will have the graph of the function [tex]\( y = -3x - 1 \)[/tex] from [tex]\( x = -2 \)[/tex] to [tex]\( x = 2 \)[/tex].
### Step-by-Step Solution:
1. Define the function:
The given function is:
[tex]\[ y = -3x - 1 \][/tex]
2. Determine the range of \( x \):
We need to plot the graph for \( x \) values ranging from \( -2 \) to \( 2 \).
3. Calculate corresponding \( y \)-values for specific \( x \)-values:
Here, we will calculate \( y \)-values for some key \( x \)-values within the given range.
- For \( x = -2 \):
[tex]\[ y = -3(-2) - 1 = 6 - 1 = 5 \][/tex]
- For \( x = -1 \):
[tex]\[ y = -3(-1) - 1 = 3 - 1 = 2 \][/tex]
- For \( x = 0 \):
[tex]\[ y = -3(0) - 1 = 0 - 1 = -1 \][/tex]
- For \( x = 1 \):
[tex]\[ y = -3(1) - 1 = -3 - 1 = -4 \][/tex]
- For \( x = 2 \):
[tex]\[ y = -3(2) - 1 = -6 - 1 = -7 \][/tex]
4. Plot the points:
We have the following points \((x, y)\):
[tex]\[ (-2, 5), (-1, 2), (0, -1), (1, -4), (2, -7) \][/tex]
5. Draw the straight line:
Since the equation \( y = -3x - 1 \) is a linear equation, which means the graph will be a straight line passing through the points we have calculated above.
6. Graphical representation:
- Label the x-axis \( x \) and the y-axis \( y \).
- Plot the calculated points on the coordinate plane.
- Draw a straight line passing through these points to represent the equation.
Here is a rough sketch of how the graph should look:
```
7 | .
6 | .
5 | .
4 |
3 |
2 | .
1 |
0 | .
-1 | .
-2 |
-3 |
-4 | .
-5 |
-6 |
-7 | .
-8 |_________________________
-2 -1 0 1 2
```
Here's a summary of the coordinates plotted:
- \((-2, 5)\)
- \((-1, 2)\)
- \((0, -1)\)
- \((1, -4)\)
- \((2, -7)\)
Connect these points with a straight line, and you will have the graph of the function [tex]\( y = -3x - 1 \)[/tex] from [tex]\( x = -2 \)[/tex] to [tex]\( x = 2 \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.