Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's work through the problem step-by-step.
1. Identify the given information:
- Point A is at 6.
- Point C is at 1.875.
- The ratio \( AC:CB = 3:5 \).
2. Determine the length of \( AC \):
- Since point A is at 6 and point C is at 1.875, the distance \( AC \) can be found by subtracting the coordinate of point C from point A:
[tex]\[ AC = 6 - 1.875 = 4.125 \text{ units} \][/tex]
3. Set up the ratio equation:
- \( AC \) and \( CB \) are in the ratio of \( 3:5 \). Let the length of \( CB \) be \( x \) units.
- Then, \( AC = \frac{3}{5} x \).
4. Solve for \( x \):
- We already found that \( AC \) is 4.125 units. Using the ratio equation, we get:
[tex]\[ 4.125 = \frac{3}{5} x \][/tex]
- To solve for \( x \), multiply both sides by \( \frac{5}{3} \):
[tex]\[ x = 4.125 \times \frac{5}{3} = 6.875 \text{ units} \][/tex]
- Thus, \( CB = 6.875 \text{ units} \).
5. Find the total length \( AB \):
- \( AB = AC + CB \).
- So,
[tex]\[ AB = 4.125 + 6.875 = 11.0 \text{ units} \][/tex]
Therefore, the length of \( \overline{AB} \) is \( 11 \) units, and the correct answer is:
C. [tex]\( AB = 11 \)[/tex] units.
1. Identify the given information:
- Point A is at 6.
- Point C is at 1.875.
- The ratio \( AC:CB = 3:5 \).
2. Determine the length of \( AC \):
- Since point A is at 6 and point C is at 1.875, the distance \( AC \) can be found by subtracting the coordinate of point C from point A:
[tex]\[ AC = 6 - 1.875 = 4.125 \text{ units} \][/tex]
3. Set up the ratio equation:
- \( AC \) and \( CB \) are in the ratio of \( 3:5 \). Let the length of \( CB \) be \( x \) units.
- Then, \( AC = \frac{3}{5} x \).
4. Solve for \( x \):
- We already found that \( AC \) is 4.125 units. Using the ratio equation, we get:
[tex]\[ 4.125 = \frac{3}{5} x \][/tex]
- To solve for \( x \), multiply both sides by \( \frac{5}{3} \):
[tex]\[ x = 4.125 \times \frac{5}{3} = 6.875 \text{ units} \][/tex]
- Thus, \( CB = 6.875 \text{ units} \).
5. Find the total length \( AB \):
- \( AB = AC + CB \).
- So,
[tex]\[ AB = 4.125 + 6.875 = 11.0 \text{ units} \][/tex]
Therefore, the length of \( \overline{AB} \) is \( 11 \) units, and the correct answer is:
C. [tex]\( AB = 11 \)[/tex] units.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.