At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let's solve the given quadratic equation step-by-step to determine the correct solutions for \(x\).
1. Given Quadratic Equation:
[tex]\[ x^2 + 2x + 1 = 17 \][/tex]
2. Rearrange the equation to standard quadratic form \(ax^2 + bx + c = 0\):
[tex]\[ x^2 + 2x + 1 - 17 = 0 \][/tex]
Simplify the constant term:
[tex]\[ x^2 + 2x - 16 = 0 \][/tex]
3. Identify the coefficients \(a\), \(b\), and \(c\):
[tex]\[ a = 1, \quad b = 2, \quad c = -16 \][/tex]
4. Calculate the discriminant \(\Delta\) (which is \(b^2 - 4ac\)):
[tex]\[ \Delta = b^2 - 4ac = 2^2 - 4 \cdot 1 \cdot (-16) \][/tex]
Calculate the values:
[tex]\[ \Delta = 4 + 64 = 68 \][/tex]
The discriminant \(\Delta\) is 68.
5. Using the quadratic formula \(x = \frac{-b \pm \sqrt{\Delta}}{2a}\):
Substitute \(a = 1\), \(b = 2\), and \(\Delta = 68\):
[tex]\[ x = \frac{-2 \pm \sqrt{68}}{2 \cdot 1} \][/tex]
6. Simplify the solutions:
[tex]\[ x = \frac{-2 \pm \sqrt{68}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{4 \cdot 17}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm 2\sqrt{17}}{2} \][/tex]
Simplify by dividing each term inside the fraction by 2:
[tex]\[ x = -1 \pm \sqrt{17} \][/tex]
7. Final Solutions:
[tex]\[ x = -1 + \sqrt{17} \quad \text{and} \quad x = -1 - \sqrt{17} \][/tex]
Therefore, the correct solution for the given equation \(x^2 + 2x + 1 = 17\) is:
[tex]\[ x = -1 \pm \sqrt{17} \][/tex]
1. Given Quadratic Equation:
[tex]\[ x^2 + 2x + 1 = 17 \][/tex]
2. Rearrange the equation to standard quadratic form \(ax^2 + bx + c = 0\):
[tex]\[ x^2 + 2x + 1 - 17 = 0 \][/tex]
Simplify the constant term:
[tex]\[ x^2 + 2x - 16 = 0 \][/tex]
3. Identify the coefficients \(a\), \(b\), and \(c\):
[tex]\[ a = 1, \quad b = 2, \quad c = -16 \][/tex]
4. Calculate the discriminant \(\Delta\) (which is \(b^2 - 4ac\)):
[tex]\[ \Delta = b^2 - 4ac = 2^2 - 4 \cdot 1 \cdot (-16) \][/tex]
Calculate the values:
[tex]\[ \Delta = 4 + 64 = 68 \][/tex]
The discriminant \(\Delta\) is 68.
5. Using the quadratic formula \(x = \frac{-b \pm \sqrt{\Delta}}{2a}\):
Substitute \(a = 1\), \(b = 2\), and \(\Delta = 68\):
[tex]\[ x = \frac{-2 \pm \sqrt{68}}{2 \cdot 1} \][/tex]
6. Simplify the solutions:
[tex]\[ x = \frac{-2 \pm \sqrt{68}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{4 \cdot 17}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm 2\sqrt{17}}{2} \][/tex]
Simplify by dividing each term inside the fraction by 2:
[tex]\[ x = -1 \pm \sqrt{17} \][/tex]
7. Final Solutions:
[tex]\[ x = -1 + \sqrt{17} \quad \text{and} \quad x = -1 - \sqrt{17} \][/tex]
Therefore, the correct solution for the given equation \(x^2 + 2x + 1 = 17\) is:
[tex]\[ x = -1 \pm \sqrt{17} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.