Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's solve the following system of linear equations step-by-step:
[tex]\[ \begin{cases} 4p + q = 19 \\ -5p + 4q = -29 \end{cases} \][/tex]
Step 1: Write both equations in standard form:
[tex]\[ 4p + q = 19 \quad \text{(Equation 1)} \][/tex]
[tex]\[ -5p + 4q = -29 \quad \text{(Equation 2)} \][/tex]
Step 2: Eliminate one variable by making the coefficients of that variable equal in magnitude. Let's eliminate \( q \). To do this, we'll multiply Equation 1 by 4:
[tex]\[ 4(4p + q) = 4 \times 19 \][/tex]
[tex]\[ 16p + 4q = 76 \quad \text{(Equation 3)} \][/tex]
Step 3: Subtract Equation 2 from Equation 3:
[tex]\[ (16p + 4q) - (-5p + 4q) = 76 - (-29) \][/tex]
[tex]\[ 16p + 4q + 5p - 4q = 76 + 29 \][/tex]
[tex]\[ 21p = 105 \][/tex]
Step 4: Solve for \( p \):
[tex]\[ p = \frac{105}{21} \][/tex]
[tex]\[ p = 5 \][/tex]
Step 5: Substitute \( p = 5 \) back into Equation 1 to find \( q \):
[tex]\[ 4(5) + q = 19 \][/tex]
[tex]\[ 20 + q = 19 \][/tex]
[tex]\[ q = 19 - 20 \][/tex]
[tex]\[ q = -1 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ p = 5, \quad q = -1 \][/tex]
[tex]\[ \begin{cases} 4p + q = 19 \\ -5p + 4q = -29 \end{cases} \][/tex]
Step 1: Write both equations in standard form:
[tex]\[ 4p + q = 19 \quad \text{(Equation 1)} \][/tex]
[tex]\[ -5p + 4q = -29 \quad \text{(Equation 2)} \][/tex]
Step 2: Eliminate one variable by making the coefficients of that variable equal in magnitude. Let's eliminate \( q \). To do this, we'll multiply Equation 1 by 4:
[tex]\[ 4(4p + q) = 4 \times 19 \][/tex]
[tex]\[ 16p + 4q = 76 \quad \text{(Equation 3)} \][/tex]
Step 3: Subtract Equation 2 from Equation 3:
[tex]\[ (16p + 4q) - (-5p + 4q) = 76 - (-29) \][/tex]
[tex]\[ 16p + 4q + 5p - 4q = 76 + 29 \][/tex]
[tex]\[ 21p = 105 \][/tex]
Step 4: Solve for \( p \):
[tex]\[ p = \frac{105}{21} \][/tex]
[tex]\[ p = 5 \][/tex]
Step 5: Substitute \( p = 5 \) back into Equation 1 to find \( q \):
[tex]\[ 4(5) + q = 19 \][/tex]
[tex]\[ 20 + q = 19 \][/tex]
[tex]\[ q = 19 - 20 \][/tex]
[tex]\[ q = -1 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ p = 5, \quad q = -1 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.