poopey
Answered

Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Which polynomial is in standard form?

A. [tex]12x - 14x^4 + 11x^5[/tex]

B. [tex]-6x - 3x^2 + 2[/tex]

C. [tex]11x^3 - 6x^2 + 5x[/tex]

D. [tex]14x^9 + 15x^{12} + 17[/tex]


Sagot :

To determine which polynomial is in standard form, we need to check whether the terms of the polynomial are arranged in descending order of their power of \(x\).

Given the polynomials:
1. \(12 x - 14 x^4 + 11 x^5\)
2. \(-6 x - 3 x^2 + 2\)
3. \(11 x^3 - 6 x^2 + 5 x\)
4. \(14 x^9 + 15 x^{12} + 17\)

Let's analyze each polynomial one by one:

1. \(12 x - 14 x^4 + 11 x^5\)
- Terms: \(12 x\), \(-14 x^4\), \(11 x^5\)
- Powers of \(x\): \(1, 4, 5\)
- The powers \(1, 4, 5\) are not in descending order. Hence, this polynomial is not in standard form.

2. \(-6 x - 3 x^2 + 2\)
- Terms: \(-6 x\), \(-3 x^2\), \(2\)
- Powers of \(x\): \(1, 2, 0\)
- The powers \(2, 1, 0\) are in descending order. Hence, this polynomial is in standard form.

3. \(11 x^3 - 6 x^2 + 5 x\)
- Terms: \(11 x^3\), \(-6 x^2\), \(5 x\)
- Powers of \(x\): \(3, 2, 1\)
- The powers \(3, 2, 1\) are in descending order. Hence, this polynomial is in standard form.

4. \(14 x^9 + 15 x^{12} + 17\)
- Terms: \(14 x^9\), \(15 x^{12}\), \(17\)
- Powers of \(x\): \(9, 12, 0\)
- The powers \(12, 9, 0\) are not in descending order. Hence, this polynomial is not in standard form.

After checking each polynomial, we find that polynomial [tex]\( \boxed{2} \)[/tex] is in standard form as its terms are arranged in descending order of the power of [tex]\(x\)[/tex].