Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the equation of a line in the slope-intercept form \( y = mx + b \) that passes through the points \((2, 18)\) and \((-3, 8)\), we need to follow these steps:
1. Calculate the slope \(m\):
The slope \(m\) of the line passing through two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points \((2, 18)\) and \((-3, 8)\):
[tex]\[ m = \frac{8 - 18}{-3 - 2} = \frac{-10}{-5} = 2 \][/tex]
2. Use one of the points to find the y-intercept \(b\):
We can use the point \((x_1, y_1)\) and the slope to find the y-intercept \(b\) using the equation:
[tex]\[ y = mx + b \][/tex]
Rearrange this to solve for \(b\):
[tex]\[ b = y - mx \][/tex]
Use the point \((2, 18)\) and the slope \(m = 2\):
[tex]\[ b = 18 - 2 \cdot 2 = 18 - 4 = 14 \][/tex]
Therefore, the value Darren should use as [tex]\(b\)[/tex] in his equation is [tex]\( \boxed{14} \)[/tex].
1. Calculate the slope \(m\):
The slope \(m\) of the line passing through two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points \((2, 18)\) and \((-3, 8)\):
[tex]\[ m = \frac{8 - 18}{-3 - 2} = \frac{-10}{-5} = 2 \][/tex]
2. Use one of the points to find the y-intercept \(b\):
We can use the point \((x_1, y_1)\) and the slope to find the y-intercept \(b\) using the equation:
[tex]\[ y = mx + b \][/tex]
Rearrange this to solve for \(b\):
[tex]\[ b = y - mx \][/tex]
Use the point \((2, 18)\) and the slope \(m = 2\):
[tex]\[ b = 18 - 2 \cdot 2 = 18 - 4 = 14 \][/tex]
Therefore, the value Darren should use as [tex]\(b\)[/tex] in his equation is [tex]\( \boxed{14} \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.