Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the equation of the line passing through point \( C \) and perpendicular to line segment \( \overline{AB} \), we start by determining the properties of line \( \overline{AB} \).
Given points \( A(2, 9) \) and \( B(8, 4) \):
1. Calculate the slope of \( \overline{AB} \):
[tex]\[ \text{slope of } \overline{AB} = \frac{B_y - A_y}{B_x - A_x} = \frac{4 - 9}{8 - 2} = \frac{-5}{6} = -\frac{5}{6} \][/tex]
2. The slope of the line perpendicular to \( \overline{AB} \) is the negative reciprocal of the slope of \( \overline{AB} \):
[tex]\[ \text{slope of the perpendicular line} = -\left(-\frac{5}{6}\right)^{-1} = \frac{6}{5} = 1.2 \][/tex]
3. The equation of a line in slope-intercept form is \( y = mx + b \). We need to find the y-intercept \( b \) of the line that passes through point \( C \) with coordinates \( (-3, -2) \) and slope \( 1.2 \):
[tex]\[ y = 1.2x + b \][/tex]
Substitute \( C(-3, -2) \) into the equation to solve for \( b \):
[tex]\[ -2 = 1.2(-3) + b \][/tex]
[tex]\[ -2 = -3.6 + b \][/tex]
[tex]\[ b = 1.6 \][/tex]
Therefore, the equation of the line passing through point \( C(-3, -2) \) and perpendicular to \( \overline{AB} \) is:
[tex]\[ y = 1.2x + 1.6 \][/tex]
So, completing the equation \( y = \square x + \square \):
[tex]\[ y = 1.2 \;x + 1.6 \][/tex]
Given points \( A(2, 9) \) and \( B(8, 4) \):
1. Calculate the slope of \( \overline{AB} \):
[tex]\[ \text{slope of } \overline{AB} = \frac{B_y - A_y}{B_x - A_x} = \frac{4 - 9}{8 - 2} = \frac{-5}{6} = -\frac{5}{6} \][/tex]
2. The slope of the line perpendicular to \( \overline{AB} \) is the negative reciprocal of the slope of \( \overline{AB} \):
[tex]\[ \text{slope of the perpendicular line} = -\left(-\frac{5}{6}\right)^{-1} = \frac{6}{5} = 1.2 \][/tex]
3. The equation of a line in slope-intercept form is \( y = mx + b \). We need to find the y-intercept \( b \) of the line that passes through point \( C \) with coordinates \( (-3, -2) \) and slope \( 1.2 \):
[tex]\[ y = 1.2x + b \][/tex]
Substitute \( C(-3, -2) \) into the equation to solve for \( b \):
[tex]\[ -2 = 1.2(-3) + b \][/tex]
[tex]\[ -2 = -3.6 + b \][/tex]
[tex]\[ b = 1.6 \][/tex]
Therefore, the equation of the line passing through point \( C(-3, -2) \) and perpendicular to \( \overline{AB} \) is:
[tex]\[ y = 1.2x + 1.6 \][/tex]
So, completing the equation \( y = \square x + \square \):
[tex]\[ y = 1.2 \;x + 1.6 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.