Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To analyze the nature of the roots for the equation \( 3x^2 - 8x + 5 = 5x^2 \), we first need to rewrite it in the standard form of a quadratic equation: \( ax^2 + bx + c = 0 \).
Given:
[tex]\[ 3x^2 - 8x + 5 = 5x^2 \][/tex]
Let's rearrange the equation to bring all terms to one side:
[tex]\[ 3x^2 - 8x + 5 - 5x^2 = 0 \][/tex]
Combine like terms:
[tex]\[ -2x^2 - 8x + 5 = 0 \][/tex]
Multiply the entire equation by -1 to make \( ax^2 \) positive:
[tex]\[ 2x^2 - 8x + 5 = 0 \][/tex]
Here, we have:
[tex]\[ a = 2 \][/tex]
[tex]\[ b = -8 \][/tex]
[tex]\[ c = 5 \][/tex]
To determine the nature of the roots, we calculate the discriminant (\(\Delta\)) of the quadratic equation, which is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute \( a \), \( b \), and \( c \) into the discriminant formula:
[tex]\[ \Delta = (-8)^2 - 4(2)(5) \][/tex]
[tex]\[ \Delta = 64 - 40 \][/tex]
[tex]\[ \Delta = 24 \][/tex]
Now, we interpret the discriminant:
- If \(\Delta > 0\), the equation has two distinct real roots.
- If \(\Delta = 0\), the equation has exactly one real root (repeated).
- If \(\Delta < 0\), the equation has two complex roots.
In this case, the discriminant (\(\Delta\)) is 24, which is greater than 0. Therefore, the quadratic equation \( 2x^2 - 8x + 5 = 0 \) has two distinct real roots.
Thus, the correct statement is:
The discriminant is greater than 0, so there are two real roots.
Given:
[tex]\[ 3x^2 - 8x + 5 = 5x^2 \][/tex]
Let's rearrange the equation to bring all terms to one side:
[tex]\[ 3x^2 - 8x + 5 - 5x^2 = 0 \][/tex]
Combine like terms:
[tex]\[ -2x^2 - 8x + 5 = 0 \][/tex]
Multiply the entire equation by -1 to make \( ax^2 \) positive:
[tex]\[ 2x^2 - 8x + 5 = 0 \][/tex]
Here, we have:
[tex]\[ a = 2 \][/tex]
[tex]\[ b = -8 \][/tex]
[tex]\[ c = 5 \][/tex]
To determine the nature of the roots, we calculate the discriminant (\(\Delta\)) of the quadratic equation, which is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute \( a \), \( b \), and \( c \) into the discriminant formula:
[tex]\[ \Delta = (-8)^2 - 4(2)(5) \][/tex]
[tex]\[ \Delta = 64 - 40 \][/tex]
[tex]\[ \Delta = 24 \][/tex]
Now, we interpret the discriminant:
- If \(\Delta > 0\), the equation has two distinct real roots.
- If \(\Delta = 0\), the equation has exactly one real root (repeated).
- If \(\Delta < 0\), the equation has two complex roots.
In this case, the discriminant (\(\Delta\)) is 24, which is greater than 0. Therefore, the quadratic equation \( 2x^2 - 8x + 5 = 0 \) has two distinct real roots.
Thus, the correct statement is:
The discriminant is greater than 0, so there are two real roots.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.