Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the inequality \( f(x) = x^2 + 2x - 15 \leq 0 \), we will analyze the quadratic function \( f(x) \) and determine where it is less than or equal to zero. Here's the step-by-step process:
1. Identify the quadratic function and the inequality:
[tex]\[ f(x) = x^2 + 2x - 15 \][/tex]
We need to find the values of \( x \) for which \( f(x) \leq 0 \).
2. Find the roots of the quadratic equation:
The roots of the equation \( x^2 + 2x - 15 = 0 \) can be found using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1 \), \( b = 2 \), and \( c = -15 \).
Calculate the discriminant:
[tex]\[ b^2 - 4ac = 2^2 - 4(1)(-15) = 4 + 60 = 64 \][/tex]
Now, find the roots:
[tex]\[ x = \frac{-2 \pm \sqrt{64}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-2 \pm 8}{2} \][/tex]
This results in two roots:
[tex]\[ x = \frac{-2 + 8}{2} = \frac{6}{2} = 3 \][/tex]
[tex]\[ x = \frac{-2 - 8}{2} = \frac{-10}{2} = -5 \][/tex]
Therefore, the roots of the quadratic equation are \( x = -5 \) and \( x = 3 \).
3. Determine the intervals to test:
The roots \( x = -5 \) and \( x = 3 \) divide the real number line into three intervals:
- \( (-\infty, -5) \)
- \( (-5, 3) \)
- \( (3, \infty) \)
4. Test the sign of the function in each interval:
- For \( x \in (-\infty, -5) \), choose a test point such as \( x = -6 \):
[tex]\[ f(-6) = (-6)^2 + 2(-6) - 15 = 36 - 12 - 15 = 9 \][/tex]
Since \( 9 > 0 \), \( f(x) > 0 \) in \( (-\infty, -5) \).
- For \( x \in (-5, 3) \), choose a test point such as \( x = 0 \):
[tex]\[ f(0) = (0)^2 + 2(0) - 15 = -15 \][/tex]
Since \( -15 \leq 0 \), \( f(x) \leq 0 \) in \( (-5, 3) \).
- For \( x \in (3, \infty) \), choose a test point such as \( x = 4 \):
[tex]\[ f(4) = (4)^2 + 2(4) - 15 = 16 + 8 - 15 = 9 \][/tex]
Since \( 9 > 0 \), \( f(x) > 0 \) in \( (3, \infty) \).
5. Conclusion:
Based on the test points, the quadratic function \( f(x) \) is less than or equal to zero in the interval \( [-5, 3] \).
Therefore, the solution to the inequality \( x^2 + 2x - 15 \leq 0 \) is:
[tex]\[ x \in [-5, 3] \][/tex]
This means that the inequality holds for all [tex]\( x \)[/tex] in the interval from [tex]\(-5\)[/tex] to [tex]\(3\)[/tex], inclusive.
1. Identify the quadratic function and the inequality:
[tex]\[ f(x) = x^2 + 2x - 15 \][/tex]
We need to find the values of \( x \) for which \( f(x) \leq 0 \).
2. Find the roots of the quadratic equation:
The roots of the equation \( x^2 + 2x - 15 = 0 \) can be found using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1 \), \( b = 2 \), and \( c = -15 \).
Calculate the discriminant:
[tex]\[ b^2 - 4ac = 2^2 - 4(1)(-15) = 4 + 60 = 64 \][/tex]
Now, find the roots:
[tex]\[ x = \frac{-2 \pm \sqrt{64}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-2 \pm 8}{2} \][/tex]
This results in two roots:
[tex]\[ x = \frac{-2 + 8}{2} = \frac{6}{2} = 3 \][/tex]
[tex]\[ x = \frac{-2 - 8}{2} = \frac{-10}{2} = -5 \][/tex]
Therefore, the roots of the quadratic equation are \( x = -5 \) and \( x = 3 \).
3. Determine the intervals to test:
The roots \( x = -5 \) and \( x = 3 \) divide the real number line into three intervals:
- \( (-\infty, -5) \)
- \( (-5, 3) \)
- \( (3, \infty) \)
4. Test the sign of the function in each interval:
- For \( x \in (-\infty, -5) \), choose a test point such as \( x = -6 \):
[tex]\[ f(-6) = (-6)^2 + 2(-6) - 15 = 36 - 12 - 15 = 9 \][/tex]
Since \( 9 > 0 \), \( f(x) > 0 \) in \( (-\infty, -5) \).
- For \( x \in (-5, 3) \), choose a test point such as \( x = 0 \):
[tex]\[ f(0) = (0)^2 + 2(0) - 15 = -15 \][/tex]
Since \( -15 \leq 0 \), \( f(x) \leq 0 \) in \( (-5, 3) \).
- For \( x \in (3, \infty) \), choose a test point such as \( x = 4 \):
[tex]\[ f(4) = (4)^2 + 2(4) - 15 = 16 + 8 - 15 = 9 \][/tex]
Since \( 9 > 0 \), \( f(x) > 0 \) in \( (3, \infty) \).
5. Conclusion:
Based on the test points, the quadratic function \( f(x) \) is less than or equal to zero in the interval \( [-5, 3] \).
Therefore, the solution to the inequality \( x^2 + 2x - 15 \leq 0 \) is:
[tex]\[ x \in [-5, 3] \][/tex]
This means that the inequality holds for all [tex]\( x \)[/tex] in the interval from [tex]\(-5\)[/tex] to [tex]\(3\)[/tex], inclusive.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.