Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the correct answers, we need to calculate the lengths of the sides of triangle \( \triangle ABC \) using the distance formula. The distance formula between two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Let's calculate the distances:
1. Length of \( AB \)
The coordinates of points \( A \) and \( B \) are \((-2, 5)\) and \((-4, -2)\), respectively.
[tex]\[ AB = \sqrt{((-4) - (-2))^2 + ((-2) - 5)^2} = \sqrt{(-2)^2 + (-7)^2} = \sqrt{4 + 49} = \sqrt{53} \approx 7.2801 \][/tex]
2. Length of \( AC \)
The coordinates of points \( A \) and \( C \) are \((-2, 5)\) and \((3, -4)\), respectively.
[tex]\[ AC = \sqrt{((3) - (-2))^2 + ((-4) - 5)^2} = \sqrt{(5)^2 + (-9)^2} = \sqrt{25 + 81} = \sqrt{106} \approx 10.2956 \][/tex]
3. Length of \( BC \)
The coordinates of points \( B \) and \( C \) are \((-4, -2)\) and \((3, -4)\), respectively.
[tex]\[ BC = \sqrt{((3) - (-4))^2 + ((-4) - (-2))^2} = \sqrt{(7)^2 + (-2)^2} = \sqrt{49 + 4} = \sqrt{53} \approx 7.2801 \][/tex]
Having calculated the side lengths:
- \( AB \approx 7.2801 \)
- \( AC \approx 10.2956 \)
- \( BC \approx 7.2801 \)
To classify the triangle, we compare the side lengths:
- Since \( AB \approx 7.2801 \) and \( BC \approx 7.2801 \) and \( AC \approx 10.2956 \), we notice that only two sides are equal.
- This makes \( \triangle ABC \) an isosceles triangle.
So, the final answer is:
- The length of \( AB \) is \( \approx 7.2801 \)
- The length of \( AC \) is \( \approx 10.2956 \)
- The length of \( BC \) is \( \approx 7.2801 \)
- Therefore, the triangle is isosceles
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Let's calculate the distances:
1. Length of \( AB \)
The coordinates of points \( A \) and \( B \) are \((-2, 5)\) and \((-4, -2)\), respectively.
[tex]\[ AB = \sqrt{((-4) - (-2))^2 + ((-2) - 5)^2} = \sqrt{(-2)^2 + (-7)^2} = \sqrt{4 + 49} = \sqrt{53} \approx 7.2801 \][/tex]
2. Length of \( AC \)
The coordinates of points \( A \) and \( C \) are \((-2, 5)\) and \((3, -4)\), respectively.
[tex]\[ AC = \sqrt{((3) - (-2))^2 + ((-4) - 5)^2} = \sqrt{(5)^2 + (-9)^2} = \sqrt{25 + 81} = \sqrt{106} \approx 10.2956 \][/tex]
3. Length of \( BC \)
The coordinates of points \( B \) and \( C \) are \((-4, -2)\) and \((3, -4)\), respectively.
[tex]\[ BC = \sqrt{((3) - (-4))^2 + ((-4) - (-2))^2} = \sqrt{(7)^2 + (-2)^2} = \sqrt{49 + 4} = \sqrt{53} \approx 7.2801 \][/tex]
Having calculated the side lengths:
- \( AB \approx 7.2801 \)
- \( AC \approx 10.2956 \)
- \( BC \approx 7.2801 \)
To classify the triangle, we compare the side lengths:
- Since \( AB \approx 7.2801 \) and \( BC \approx 7.2801 \) and \( AC \approx 10.2956 \), we notice that only two sides are equal.
- This makes \( \triangle ABC \) an isosceles triangle.
So, the final answer is:
- The length of \( AB \) is \( \approx 7.2801 \)
- The length of \( AC \) is \( \approx 10.2956 \)
- The length of \( BC \) is \( \approx 7.2801 \)
- Therefore, the triangle is isosceles
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.