Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the polynomial function \( f(x) \) with the specified characteristics, let’s go through the analysis step-by-step:
### Step 1: Identifying the Roots and Their Multiplicities
Given the roots and their multiplicities:
- Root at \( x = -4 \) with multiplicity 1
- Root at \( x = 5 \) with multiplicity 1
- Root at \( x = 1 \) with multiplicity 2
The general form of \( f(x) \) can be written as:
[tex]\[ f(x) = a(x + 4)(x - 5)(x - 1)^2 \][/tex]
where \( a \) is a constant multiplier that needs to be determined.
### Step 2: Utilizing the Y-Intercept
We know that the y-intercept of the function occurs when \( x = 0 \).
Given that the y-intercept is 40, we have:
[tex]\[ f(0) = 40 \][/tex]
### Step 3: Substitute \( x = 0 \) into the Polynomial
[tex]\[ f(0) = a(0 + 4)(0 - 5)(0 - 1)^2 \][/tex]
[tex]\[ f(0) = a \cdot 4 \cdot (-5) \cdot 1 \][/tex]
[tex]\[ 40 = a \cdot 4 \cdot (-5) \][/tex]
[tex]\[ 40 = a \cdot (-20) \][/tex]
[tex]\[ a = \frac{40}{-20} \][/tex]
[tex]\[ a = -2 \][/tex]
### Step 4: Construct the Polynomial with the Determined Multiplier
Now, substitute \( a = -2 \) back into the polynomial:
[tex]\[ f(x) = -2(x + 4)(x - 5)(x - 1)^2 \][/tex]
### Step 5: Expand the Polynomial Expression
Expand the expression to find the polynomial in standard form:
[tex]\[ f(x) = -2(x + 4)(x - 5)(x - 1)^2 \][/tex]
First, expand \( (x - 1)^2 \):
[tex]\[ (x - 1)^2 = x^2 - 2x + 1 \][/tex]
Next, expand \( (x + 4)(x - 5) \):
[tex]\[ (x + 4)(x - 5) = x^2 - x - 20 \][/tex]
Now, multiply the expanded terms:
[tex]\[ f(x) = -2(x^2 - x - 20)(x^2 - 2x + 1) \][/tex]
Further expanding:
[tex]\[ (x^2 - x - 20)(x^2 - 2x + 1) = x^4 - 2x^3 + x^2 - x^3 + 2x^2 - x - 20x^2 + 40x - 20 \][/tex]
[tex]\[ = x^4 - 3x^3 - 17x^2 + 39x - 20 \][/tex]
Multiply by \(-2\):
[tex]\[ f(x) = -2(x^4 - 3x^3 - 17x^2 + 39x - 20) \][/tex]
[tex]\[ = -2x^4 + 6x^3 + 34x^2 - 78x + 40 \][/tex]
Thus, the polynomial function is:
[tex]\[ f(x) = -2x^4 + 6x^3 + 34x^2 - 78x + 40 \][/tex]
### Step 1: Identifying the Roots and Their Multiplicities
Given the roots and their multiplicities:
- Root at \( x = -4 \) with multiplicity 1
- Root at \( x = 5 \) with multiplicity 1
- Root at \( x = 1 \) with multiplicity 2
The general form of \( f(x) \) can be written as:
[tex]\[ f(x) = a(x + 4)(x - 5)(x - 1)^2 \][/tex]
where \( a \) is a constant multiplier that needs to be determined.
### Step 2: Utilizing the Y-Intercept
We know that the y-intercept of the function occurs when \( x = 0 \).
Given that the y-intercept is 40, we have:
[tex]\[ f(0) = 40 \][/tex]
### Step 3: Substitute \( x = 0 \) into the Polynomial
[tex]\[ f(0) = a(0 + 4)(0 - 5)(0 - 1)^2 \][/tex]
[tex]\[ f(0) = a \cdot 4 \cdot (-5) \cdot 1 \][/tex]
[tex]\[ 40 = a \cdot 4 \cdot (-5) \][/tex]
[tex]\[ 40 = a \cdot (-20) \][/tex]
[tex]\[ a = \frac{40}{-20} \][/tex]
[tex]\[ a = -2 \][/tex]
### Step 4: Construct the Polynomial with the Determined Multiplier
Now, substitute \( a = -2 \) back into the polynomial:
[tex]\[ f(x) = -2(x + 4)(x - 5)(x - 1)^2 \][/tex]
### Step 5: Expand the Polynomial Expression
Expand the expression to find the polynomial in standard form:
[tex]\[ f(x) = -2(x + 4)(x - 5)(x - 1)^2 \][/tex]
First, expand \( (x - 1)^2 \):
[tex]\[ (x - 1)^2 = x^2 - 2x + 1 \][/tex]
Next, expand \( (x + 4)(x - 5) \):
[tex]\[ (x + 4)(x - 5) = x^2 - x - 20 \][/tex]
Now, multiply the expanded terms:
[tex]\[ f(x) = -2(x^2 - x - 20)(x^2 - 2x + 1) \][/tex]
Further expanding:
[tex]\[ (x^2 - x - 20)(x^2 - 2x + 1) = x^4 - 2x^3 + x^2 - x^3 + 2x^2 - x - 20x^2 + 40x - 20 \][/tex]
[tex]\[ = x^4 - 3x^3 - 17x^2 + 39x - 20 \][/tex]
Multiply by \(-2\):
[tex]\[ f(x) = -2(x^4 - 3x^3 - 17x^2 + 39x - 20) \][/tex]
[tex]\[ = -2x^4 + 6x^3 + 34x^2 - 78x + 40 \][/tex]
Thus, the polynomial function is:
[tex]\[ f(x) = -2x^4 + 6x^3 + 34x^2 - 78x + 40 \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.