Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the maximum number of real zeros that the polynomial \( P(x) \) can have, we first need to look at its degree. The degree of a polynomial is the highest power of the variable \( x \) that appears in the polynomial with a non-zero coefficient.
Given the polynomial:
[tex]\[ P(x) = -26 x^6 - 10 x^4 - 27 x^9 - 24 x^{10} + 22 x^2 - 9 x^7 + 109 \][/tex]
Let's identify the terms and their degrees:
- \(-26 x^6\) has degree \(6\)
- \(-10 x^4\) has degree \(4\)
- \(-27 x^9\) has degree \(9\)
- \(-24 x^{10}\) has degree \(10\)
- \(22 x^2\) has degree \(2\)
- \(-9 x^7\) has degree \(7\)
- \(109\) (the constant term) has degree \(0\)
The highest degree among these terms is \(10\), which comes from the term \(-24 x^{10}\).
The Fundamental Theorem of Algebra states that a polynomial of degree \( n \) has exactly \( n \) roots in the complex number system (counting multiplicities). A real polynomial's roots can be real or complex, but the number of real roots cannot be greater than the degree of the polynomial.
For the given polynomial \( P(x) \), the highest degree is \(10\). Therefore, the maximum number of real zeros \( P(x) \) can have is 10.
Hence, the final result is:
[tex]\[ \boxed{10} \][/tex]
Given the polynomial:
[tex]\[ P(x) = -26 x^6 - 10 x^4 - 27 x^9 - 24 x^{10} + 22 x^2 - 9 x^7 + 109 \][/tex]
Let's identify the terms and their degrees:
- \(-26 x^6\) has degree \(6\)
- \(-10 x^4\) has degree \(4\)
- \(-27 x^9\) has degree \(9\)
- \(-24 x^{10}\) has degree \(10\)
- \(22 x^2\) has degree \(2\)
- \(-9 x^7\) has degree \(7\)
- \(109\) (the constant term) has degree \(0\)
The highest degree among these terms is \(10\), which comes from the term \(-24 x^{10}\).
The Fundamental Theorem of Algebra states that a polynomial of degree \( n \) has exactly \( n \) roots in the complex number system (counting multiplicities). A real polynomial's roots can be real or complex, but the number of real roots cannot be greater than the degree of the polynomial.
For the given polynomial \( P(x) \), the highest degree is \(10\). Therefore, the maximum number of real zeros \( P(x) \) can have is 10.
Hence, the final result is:
[tex]\[ \boxed{10} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.