Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's go through the detailed, step-by-step solution to determine the correct formula for calculating the \( pH \) depending on the \( H^+ \) concentration \(\left(\left[ H^+\right]\right)\).
1. Understanding pH: The pH of a solution is a measure of its acidity or basicity. It is defined as:
[tex]\[ pH = -\log \left(\left[ H^+\right]\right) \][/tex]
where \(\left[ H^+\right]\) is the concentration of hydrogen ions (or hydronium ions) in the solution.
2. Given Information: You measured a \( pH \) of 7 in a solution that has \( 10^{-7} \) moles per liter of dissociated \( H_2O \) (H2O is ionized to \( H^+ \) and \( OH^-\)). This implies that:
[tex]\[ -\log \left(10^{-7}\right) = 7 \][/tex]
3. Analyzing the Options:
a) \( pH = \log \left(\left[ H^+\right] \times 10^{-7}\right) \)
- This suggests taking a logarithm of the product of the hydrogen ion concentration and \( 10^{-7} \). This doesn't fit with our definition of pH as it should involve just \(\left[ H^+\right]\).
b) \( pH = -\log \left(1 \times 10^7\right) \)
- This option is incorrect as it ignores the concentration of \( H^+ \) ions; also, \( 10^7 \) is the inverse of the concentration for a neutral solution, hence, resulting in incorrect calculation.
c) \( pH = \log \left(1 \times 10^7\right) \)
- This option similarly ignores the concentration of \( H^+ \) ions and provides a formulation which is not aligned with how pH is actually defined and calculated.
d) \( pH = -\log \left(\left[ H^+\right]\right) \)
- This option correctly matches the universally accepted definition of pH where it is the negative logarithm of the hydrogen ion concentration.
4. Correct Answer: Given what we've examined, the correct formula is:
[tex]\[ pH = -\log \left(\left[ H^+\right]\right) \][/tex]
Thus, the correct option is:
d) \( pH = -\log \left(\left[ H^+\right]\right) \).
This defines the pH in a manner consistent with the commonly accepted scientific definition.
1. Understanding pH: The pH of a solution is a measure of its acidity or basicity. It is defined as:
[tex]\[ pH = -\log \left(\left[ H^+\right]\right) \][/tex]
where \(\left[ H^+\right]\) is the concentration of hydrogen ions (or hydronium ions) in the solution.
2. Given Information: You measured a \( pH \) of 7 in a solution that has \( 10^{-7} \) moles per liter of dissociated \( H_2O \) (H2O is ionized to \( H^+ \) and \( OH^-\)). This implies that:
[tex]\[ -\log \left(10^{-7}\right) = 7 \][/tex]
3. Analyzing the Options:
a) \( pH = \log \left(\left[ H^+\right] \times 10^{-7}\right) \)
- This suggests taking a logarithm of the product of the hydrogen ion concentration and \( 10^{-7} \). This doesn't fit with our definition of pH as it should involve just \(\left[ H^+\right]\).
b) \( pH = -\log \left(1 \times 10^7\right) \)
- This option is incorrect as it ignores the concentration of \( H^+ \) ions; also, \( 10^7 \) is the inverse of the concentration for a neutral solution, hence, resulting in incorrect calculation.
c) \( pH = \log \left(1 \times 10^7\right) \)
- This option similarly ignores the concentration of \( H^+ \) ions and provides a formulation which is not aligned with how pH is actually defined and calculated.
d) \( pH = -\log \left(\left[ H^+\right]\right) \)
- This option correctly matches the universally accepted definition of pH where it is the negative logarithm of the hydrogen ion concentration.
4. Correct Answer: Given what we've examined, the correct formula is:
[tex]\[ pH = -\log \left(\left[ H^+\right]\right) \][/tex]
Thus, the correct option is:
d) \( pH = -\log \left(\left[ H^+\right]\right) \).
This defines the pH in a manner consistent with the commonly accepted scientific definition.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.