Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's analyze each step Jerry took in solving the equation \( 3\left(x - \frac{1}{4}\right) = \frac{13}{6} \):
1. Starting with the given equation:
[tex]\[ 3\left(x - \frac{1}{4}\right) = \frac{13}{6} \][/tex]
Jerry correctly distributed the 3:
[tex]\[ 3x - \frac{3}{4} = \frac{13}{6} \][/tex]
2. To isolate \( x \), Jerry added \( \frac{3}{4} \) to both sides. This step looks like:
[tex]\[ 3x - \frac{3}{4} + \frac{3}{4} = \frac{13}{6} + \frac{3}{4} \][/tex]
This is correct since adding \( \frac{3}{4} \) balances the equation.
3. Next, Jerry combined the fractions on the right side:
[tex]\[ 3x = \frac{13}{6} + \frac{3}{4} \][/tex]
To add these fractions, Jerry needed a common denominator. The least common denominator (LCD) of 6 and 4 is 12:
[tex]\[ \frac{13}{6} = \frac{26}{12} \][/tex]
[tex]\[ \frac{3}{4} = \frac{9}{12} \][/tex]
Adding these gives:
[tex]\[ 3x = \frac{26}{12} + \frac{9}{12} = \frac{35}{12} \][/tex]
4. Therefore, step 4 (simplifying to \( 3x = \frac{35}{12} \)) is correct:
[tex]\[ 3x = \frac{35}{12} \][/tex]
5. However, in step 5, Jerry mistakenly multiplied by \( \frac{3}{1} \) instead of dividing both sides by 3 (or multiplying by \( \frac{1}{3} \)):
[tex]\[ 3x = \frac{35}{12} \][/tex]
To solve for \( x \), we should divide both sides by 3:
[tex]\[ x = \frac{\frac{35}{12}}{3} = \frac{35}{12} \cdot \frac{1}{3} = \frac{35}{36} \][/tex]
Based on this detailed analysis, Jerry made the error in step 5. Thus, the error occurs in step 5, where Jerry should have multiplied both sides by [tex]\( \frac{1}{3} \)[/tex].
1. Starting with the given equation:
[tex]\[ 3\left(x - \frac{1}{4}\right) = \frac{13}{6} \][/tex]
Jerry correctly distributed the 3:
[tex]\[ 3x - \frac{3}{4} = \frac{13}{6} \][/tex]
2. To isolate \( x \), Jerry added \( \frac{3}{4} \) to both sides. This step looks like:
[tex]\[ 3x - \frac{3}{4} + \frac{3}{4} = \frac{13}{6} + \frac{3}{4} \][/tex]
This is correct since adding \( \frac{3}{4} \) balances the equation.
3. Next, Jerry combined the fractions on the right side:
[tex]\[ 3x = \frac{13}{6} + \frac{3}{4} \][/tex]
To add these fractions, Jerry needed a common denominator. The least common denominator (LCD) of 6 and 4 is 12:
[tex]\[ \frac{13}{6} = \frac{26}{12} \][/tex]
[tex]\[ \frac{3}{4} = \frac{9}{12} \][/tex]
Adding these gives:
[tex]\[ 3x = \frac{26}{12} + \frac{9}{12} = \frac{35}{12} \][/tex]
4. Therefore, step 4 (simplifying to \( 3x = \frac{35}{12} \)) is correct:
[tex]\[ 3x = \frac{35}{12} \][/tex]
5. However, in step 5, Jerry mistakenly multiplied by \( \frac{3}{1} \) instead of dividing both sides by 3 (or multiplying by \( \frac{1}{3} \)):
[tex]\[ 3x = \frac{35}{12} \][/tex]
To solve for \( x \), we should divide both sides by 3:
[tex]\[ x = \frac{\frac{35}{12}}{3} = \frac{35}{12} \cdot \frac{1}{3} = \frac{35}{36} \][/tex]
Based on this detailed analysis, Jerry made the error in step 5. Thus, the error occurs in step 5, where Jerry should have multiplied both sides by [tex]\( \frac{1}{3} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.