Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine after which value of \( x \) the function \( g \) exceeds function \( f \), let's compare the values of \( f(x) \) and \( g(x) \) at each \( x \) given in the table.
We will look at the values of \( f(x) \) and \( g(x) \) side by side and find the first instance where \( g(x) \) is greater than \( f(x) \):
[tex]\[ \begin{array}{|c|c|c|} \hline x & f(x) & g(x) \\ \hline -1 & -2.5 & -3.67 \\ \hline 0 & -1 & -3 \\ \hline 1 & 1.5 & -1 \\ \hline 2 & 5 & 5 \\ \hline 3 & 9.5 & 23 \\ \hline 4 & 15 & 77 \\ \hline 5 & 21.5 & 239 \\ \hline \end{array} \][/tex]
1. For \( x = -1 \):
[tex]\[ f(-1) = -2.5, \quad g(-1) = -3.67 \][/tex]
\( g(-1) \) is not greater than \( f(-1) \).
2. For \( x = 0 \):
[tex]\[ f(0) = -1, \quad g(0) = -3 \][/tex]
\( g(0) \) is not greater than \( f(0) \).
3. For \( x = 1 \):
[tex]\[ f(1) = 1.5, \quad g(1) = -1 \][/tex]
\( g(1) \) is not greater than \( f(1) \).
4. For \( x = 2 \):
[tex]\[ f(2) = 5, \quad g(2) = 5 \][/tex]
\( g(2) \) is equal to \( f(2) \).
5. For \( x = 3 \):
[tex]\[ f(3) = 9.5, \quad g(3) = 23 \][/tex]
\( g(3) \) is greater than \( f(3) \).
At \( x = 3 \), for the first time, \( g(x) \) exceeds \( f(x) \).
Thus, function [tex]\( g \)[/tex] exceeds function [tex]\( f \)[/tex] at [tex]\( x = 3 \)[/tex] and for all subsequent [tex]\( x \)[/tex] values.
We will look at the values of \( f(x) \) and \( g(x) \) side by side and find the first instance where \( g(x) \) is greater than \( f(x) \):
[tex]\[ \begin{array}{|c|c|c|} \hline x & f(x) & g(x) \\ \hline -1 & -2.5 & -3.67 \\ \hline 0 & -1 & -3 \\ \hline 1 & 1.5 & -1 \\ \hline 2 & 5 & 5 \\ \hline 3 & 9.5 & 23 \\ \hline 4 & 15 & 77 \\ \hline 5 & 21.5 & 239 \\ \hline \end{array} \][/tex]
1. For \( x = -1 \):
[tex]\[ f(-1) = -2.5, \quad g(-1) = -3.67 \][/tex]
\( g(-1) \) is not greater than \( f(-1) \).
2. For \( x = 0 \):
[tex]\[ f(0) = -1, \quad g(0) = -3 \][/tex]
\( g(0) \) is not greater than \( f(0) \).
3. For \( x = 1 \):
[tex]\[ f(1) = 1.5, \quad g(1) = -1 \][/tex]
\( g(1) \) is not greater than \( f(1) \).
4. For \( x = 2 \):
[tex]\[ f(2) = 5, \quad g(2) = 5 \][/tex]
\( g(2) \) is equal to \( f(2) \).
5. For \( x = 3 \):
[tex]\[ f(3) = 9.5, \quad g(3) = 23 \][/tex]
\( g(3) \) is greater than \( f(3) \).
At \( x = 3 \), for the first time, \( g(x) \) exceeds \( f(x) \).
Thus, function [tex]\( g \)[/tex] exceeds function [tex]\( f \)[/tex] at [tex]\( x = 3 \)[/tex] and for all subsequent [tex]\( x \)[/tex] values.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.