Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the inverse of the function \( f(x) = \frac{1}{x^6} \) with \( x > 0 \), we can follow these steps:
### Finding the Inverse Function \( f^{-1}(x) \)
1. Express \( y \) in terms of \( x \):
Given \( y = f(x) = \frac{1}{x^6} \).
2. Swap \( x \) and \( y \):
To find the inverse, we interchange \( x \) and \( y \) to obtain:
[tex]\[ x = \frac{1}{y^6} \][/tex]
3. Solve for \( y \):
Isolate \( y \) by solving:
[tex]\[ y^6 = \frac{1}{x} \][/tex]
Take the sixth root of both sides:
[tex]\[ y = \left( \frac{1}{x} \right)^{\frac{1}{6}} = x^{-\frac{1}{6}} \][/tex]
Thus, the inverse function is:
[tex]\[ f^{-1}(x) = x^{-\frac{1}{6}} \][/tex]
### Domain and Range of \( f^{-1}(x) \)
For the inverse function \( f^{-1}(x) = x^{-\frac{1}{6}} \):
- Domain: The domain of \( f^{-1}(x) \) corresponds to the range of the original function \( f(x) \). Since \( f(x) = \frac{1}{x^6} \) for \( x > 0 \), \( f(x) \) is always positive. Therefore, the domain of \( f^{-1}(x) \) is \( x > 0 \).
- Range: The range of \( f^{-1}(x) \) corresponds to the domain of the original function \( f(x) \). Since the domain of \( f(x) \) is \( x > 0 \), the range of \( f^{-1}(x) \) is also \( y > 0 \).
### Verification of the Inverse Function
To verify that \( f^{-1}(x) \) is indeed the inverse of \( f(x) \), we must show that:
1. \( f(f^{-1}(x)) = x \)
2. \( f^{-1}(f(x)) = x \)
#### 1. Verifying \( f(f^{-1}(x)) = x \):
[tex]\[ f(f^{-1}(x)) = f(x^{-\frac{1}{6}}) = \frac{1}{(x^{-\frac{1}{6}})^6} \][/tex]
Since:
[tex]\[ (x^{-\frac{1}{6}})^6 = x^{-1} *6 = x^{-6/6} = x^{-1} = x^{1} \][/tex]
Thus:
[tex]\[ f(f^{-1}(x)) = \frac{1}{x^{1}} = x \][/tex]
#### 2. Verifying \( f^{-1}(f(x)) = x \):
[tex]\[ f^{-1}(f(x)) = f^{-1}\left( \frac{1}{x^6} \right) = \left( \frac{1}{x^6} \right)^{-\frac{1}{6}} \][/tex]
Which simplifies to:
[tex]\[ \left( \frac{1}{x^6} \right)^{-\frac{1}{6}} = (x^{-6})^{-\frac{1}{6}} = x \][/tex]
Both conditions \( f(f^{-1}(x)) = x \) and \( f^{-1}(f(x)) = x \) are satisfied, confirming that the inverse function is correct.
### Summary
- The inverse function is \( f^{-1}(x) = x^{-\frac{1}{6}} \).
- The domain of \( f^{-1}(x) \) is \( x > 0 \).
- The range of \( f^{-1}(x) \) is \( y > 0 \).
Thus, the solution to the problem is:
[tex]\[ f^{-1}(x) = x^{-\frac{1}{6}}, \quad \text{with domain:} \, x > 0, \quad \text{and range:} \, y > 0. \][/tex]
### Finding the Inverse Function \( f^{-1}(x) \)
1. Express \( y \) in terms of \( x \):
Given \( y = f(x) = \frac{1}{x^6} \).
2. Swap \( x \) and \( y \):
To find the inverse, we interchange \( x \) and \( y \) to obtain:
[tex]\[ x = \frac{1}{y^6} \][/tex]
3. Solve for \( y \):
Isolate \( y \) by solving:
[tex]\[ y^6 = \frac{1}{x} \][/tex]
Take the sixth root of both sides:
[tex]\[ y = \left( \frac{1}{x} \right)^{\frac{1}{6}} = x^{-\frac{1}{6}} \][/tex]
Thus, the inverse function is:
[tex]\[ f^{-1}(x) = x^{-\frac{1}{6}} \][/tex]
### Domain and Range of \( f^{-1}(x) \)
For the inverse function \( f^{-1}(x) = x^{-\frac{1}{6}} \):
- Domain: The domain of \( f^{-1}(x) \) corresponds to the range of the original function \( f(x) \). Since \( f(x) = \frac{1}{x^6} \) for \( x > 0 \), \( f(x) \) is always positive. Therefore, the domain of \( f^{-1}(x) \) is \( x > 0 \).
- Range: The range of \( f^{-1}(x) \) corresponds to the domain of the original function \( f(x) \). Since the domain of \( f(x) \) is \( x > 0 \), the range of \( f^{-1}(x) \) is also \( y > 0 \).
### Verification of the Inverse Function
To verify that \( f^{-1}(x) \) is indeed the inverse of \( f(x) \), we must show that:
1. \( f(f^{-1}(x)) = x \)
2. \( f^{-1}(f(x)) = x \)
#### 1. Verifying \( f(f^{-1}(x)) = x \):
[tex]\[ f(f^{-1}(x)) = f(x^{-\frac{1}{6}}) = \frac{1}{(x^{-\frac{1}{6}})^6} \][/tex]
Since:
[tex]\[ (x^{-\frac{1}{6}})^6 = x^{-1} *6 = x^{-6/6} = x^{-1} = x^{1} \][/tex]
Thus:
[tex]\[ f(f^{-1}(x)) = \frac{1}{x^{1}} = x \][/tex]
#### 2. Verifying \( f^{-1}(f(x)) = x \):
[tex]\[ f^{-1}(f(x)) = f^{-1}\left( \frac{1}{x^6} \right) = \left( \frac{1}{x^6} \right)^{-\frac{1}{6}} \][/tex]
Which simplifies to:
[tex]\[ \left( \frac{1}{x^6} \right)^{-\frac{1}{6}} = (x^{-6})^{-\frac{1}{6}} = x \][/tex]
Both conditions \( f(f^{-1}(x)) = x \) and \( f^{-1}(f(x)) = x \) are satisfied, confirming that the inverse function is correct.
### Summary
- The inverse function is \( f^{-1}(x) = x^{-\frac{1}{6}} \).
- The domain of \( f^{-1}(x) \) is \( x > 0 \).
- The range of \( f^{-1}(x) \) is \( y > 0 \).
Thus, the solution to the problem is:
[tex]\[ f^{-1}(x) = x^{-\frac{1}{6}}, \quad \text{with domain:} \, x > 0, \quad \text{and range:} \, y > 0. \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.