Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the length of the altitude of a right triangle that divides the hypotenuse into segments of lengths 6 and 9, we use a method related to the geometric mean.
Given:
- Segment 1 (length) = 6
- Segment 2 (length) = 9
To find the length of the altitude \( h \), we use the geometric mean formula for the lengths of the segments:
[tex]\[ h = \sqrt{\text{segment1} \times \text{segment2}} \][/tex]
[tex]\[ h = \sqrt{6 \times 9} \][/tex]
[tex]\[ h = \sqrt{54} \][/tex]
Simplifying the square root:
[tex]\[ \sqrt{54} = \sqrt{9 \times 6} = \sqrt{9} \times \sqrt{6} = 3 \sqrt{6} \][/tex]
Thus, the length of the altitude, in its simplest form, is \( 3 \sqrt{6} \).
Now, we need to compare this calculated altitude with the given options:
1. \( 9 \sqrt{2} \)
2. \( 6 \sqrt{6} \)
3. \( 3 \sqrt{6} \)
4. \( 6 \sqrt{3} \)
From our calculations, we see that the altitude \( 3 \sqrt{6} \) matches one of the provided options exactly.
Therefore, the correct answer is:
[tex]\[ 3 \sqrt{6} \][/tex]
Given:
- Segment 1 (length) = 6
- Segment 2 (length) = 9
To find the length of the altitude \( h \), we use the geometric mean formula for the lengths of the segments:
[tex]\[ h = \sqrt{\text{segment1} \times \text{segment2}} \][/tex]
[tex]\[ h = \sqrt{6 \times 9} \][/tex]
[tex]\[ h = \sqrt{54} \][/tex]
Simplifying the square root:
[tex]\[ \sqrt{54} = \sqrt{9 \times 6} = \sqrt{9} \times \sqrt{6} = 3 \sqrt{6} \][/tex]
Thus, the length of the altitude, in its simplest form, is \( 3 \sqrt{6} \).
Now, we need to compare this calculated altitude with the given options:
1. \( 9 \sqrt{2} \)
2. \( 6 \sqrt{6} \)
3. \( 3 \sqrt{6} \)
4. \( 6 \sqrt{3} \)
From our calculations, we see that the altitude \( 3 \sqrt{6} \) matches one of the provided options exactly.
Therefore, the correct answer is:
[tex]\[ 3 \sqrt{6} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.