Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the horizontal asymptotes of the function \( f(x) = \frac{x^2 - 5x + 6}{x^3 - 8} \), we analyze the degrees of the polynomial in the numerator and the polynomial in the denominator.
1. Determine the degrees of the numerator and denominator:
- The degree of the numerator \( x^2 - 5x + 6 \) is 2 (since the highest power of \( x \) is \( x^2 \)).
- The degree of the denominator \( x^3 - 8 \) is 3 (since the highest power of \( x \) is \( x^3 \)).
2. Compare the degrees to determine the horizontal asymptote:
- If the degree of the numerator is less than the degree of the denominator, there is a horizontal asymptote at \( y = 0 \).
- If the degree of the numerator is equal to the degree of the denominator, the horizontal asymptote is \( y = \frac{\text{leading coefficient of the numerator}}{\text{leading coefficient of the denominator}} \).
- If the degree of the numerator is greater than the degree of the denominator, there is no horizontal asymptote (though there may be an oblique asymptote).
In this case:
- The degree of the numerator (2) is less than the degree of the denominator (3).
Therefore, the horizontal asymptote of the function \( f(x) \) is:
[tex]\[ y = 0 \][/tex]
This completes the analysis and identifies the horizontal asymptote for the given function [tex]\( f(x)=\frac{x^2-5 x+6}{x^3-8} \)[/tex]. The horizontal asymptote is [tex]\( y = 0 \)[/tex].
1. Determine the degrees of the numerator and denominator:
- The degree of the numerator \( x^2 - 5x + 6 \) is 2 (since the highest power of \( x \) is \( x^2 \)).
- The degree of the denominator \( x^3 - 8 \) is 3 (since the highest power of \( x \) is \( x^3 \)).
2. Compare the degrees to determine the horizontal asymptote:
- If the degree of the numerator is less than the degree of the denominator, there is a horizontal asymptote at \( y = 0 \).
- If the degree of the numerator is equal to the degree of the denominator, the horizontal asymptote is \( y = \frac{\text{leading coefficient of the numerator}}{\text{leading coefficient of the denominator}} \).
- If the degree of the numerator is greater than the degree of the denominator, there is no horizontal asymptote (though there may be an oblique asymptote).
In this case:
- The degree of the numerator (2) is less than the degree of the denominator (3).
Therefore, the horizontal asymptote of the function \( f(x) \) is:
[tex]\[ y = 0 \][/tex]
This completes the analysis and identifies the horizontal asymptote for the given function [tex]\( f(x)=\frac{x^2-5 x+6}{x^3-8} \)[/tex]. The horizontal asymptote is [tex]\( y = 0 \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.