Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Which ordered pair makes both inequalities true?

[tex]\[
\begin{array}{l}
y \ \textgreater \ -2x + 3 \\
y \leq x - 2
\end{array}
\][/tex]

A. (0, 0)

B. (0, -1)

C. (1, 1)

D. (3, 0)


Sagot :

To determine which ordered pair makes both inequalities true, let's analyze each pair step-by-step.

Given inequalities:
[tex]\[ y > -2x + 3 \][/tex]
[tex]\[ y \leq x - 2 \][/tex]

We need to check these conditions for the following ordered pairs: \((0,0)\), \((0,-1)\), \((1,1)\), and \((3,0)\).

1. For the ordered pair \((0,0)\):
- Check the first inequality: \(y > -2x + 3\)
- Substitute \(x = 0\) and \(y = 0\):
[tex]\[0 > -2(0) + 3 \Rightarrow 0 > 3\][/tex]
- This is false.
- Since the first inequality is not satisfied, we do not need to check the second one.

2. For the ordered pair \((0,-1)\):
- Check the first inequality: \(y > -2x + 3\)
- Substitute \(x = 0\) and \(y = -1\):
[tex]\[-1 > -2(0) + 3 \Rightarrow -1 > 3\][/tex]
- This is false.
- Since the first inequality is not satisfied, we do not need to check the second one.

3. For the ordered pair \((1,1)\):
- Check the first inequality: \(y > -2x + 3\)
- Substitute \(x = 1\) and \(y = 1\):
[tex]\[1 > -2(1) + 3 \Rightarrow 1 > 1\][/tex]
- This is false.
- Since the first inequality is not satisfied, we do not need to check the second one.

4. For the ordered pair \((3,0)\):
- Check the first inequality: \(y > -2x + 3\)
- Substitute \(x = 3\) and \(y = 0\):
[tex]\[0 > -2(3) + 3 \Rightarrow 0 > -6 + 3 \Rightarrow 0 > -3\][/tex]
- This is true.
- Check the second inequality: \(y \leq x - 2\)
- Substitute \(x = 3\) and \(y = 0\):
[tex]\[0 \leq 3 - 2 \Rightarrow 0 \leq 1\][/tex]
- This is true.

Since the ordered pair \((3,0)\) satisfies both inequalities, the answer is:
[tex]\[ \boxed{(3,0)} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.