Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the equation \(2x + 3y = 5\) for \(x\), we need to check each of the given options to see which one satisfies the equation.
1. Option 1: \(x = -3y + \frac{5}{2}\)
Substitute \(x = -3y + \frac{5}{2}\) into the original equation:
[tex]\[ 2(-3y + \frac{5}{2}) + 3y = 5 \][/tex]
Simplify inside the parentheses:
[tex]\[ 2(-3y) + 2 \cdot \frac{5}{2} + 3y = 5 \][/tex]
This becomes:
[tex]\[ -6y + 5 + 3y = 5 \][/tex]
Combine like terms:
[tex]\[ -3y + 5 = 5 \][/tex]
Subtract 5 from both sides:
[tex]\[ -3y = 0 \][/tex]
Divide by -3:
[tex]\[ y = 0 \][/tex]
Substituting \(y = 0\) back, we see that it works only when \(y = 0\).
2. Option 2: \(x = \frac{-3}{2}y + 5\)
Substitute \(x = \frac{-3}{2}y + 5\) into the original equation:
[tex]\[ 2\left(\frac{-3}{2}y + 5\right) + 3y = 5 \][/tex]
Simplify inside the parentheses:
[tex]\[ 2 \cdot \frac{-3}{2}y + 2 \cdot 5 + 3y = 5 \][/tex]
This becomes:
[tex]\[ -3y + 10 + 3y = 5 \][/tex]
Combine like terms:
[tex]\[ 10 \neq 5 \][/tex]
So, this option is incorrect.
3. Option 3: \(x = \frac{-3y + 5}{2}\)
Substitute \(x = \frac{-3y + 5}{2}\) into the original equation:
[tex]\[ 2\left(\frac{-3y + 5}{2}\right) + 3y = 5 \][/tex]
Simplify inside the parentheses:
[tex]\[ \frac{2(-3y + 5)}{2} + 3y = 5 \][/tex]
Which simplifies to:
[tex]\[ -3y + 5 + 3y = 5 \][/tex]
Combine like terms:
[tex]\[ 5 = 5 \][/tex]
This option satisfies the original equation, so it is correct.
4. Option 4: \(x = \frac{3y + 5}{2}\)
Substitute \(x = \frac{3y + 5}{2}\) into the original equation:
[tex]\[ 2\left(\frac{3y + 5}{2}\right) + 3y = 5 \][/tex]
Simplify inside the parentheses:
[tex]\[ \frac{2(3y + 5)}{2} + 3y = 5 \][/tex]
Which simplifies to:
[tex]\[ 3y + 5 + 3y = 5 \][/tex]
Combine like terms:
[tex]\[ 6y + 5 = 5 \][/tex]
Subtract 5 from both sides:
[tex]\[ 6y = 0 \][/tex]
Divide by 6:
[tex]\[ y = 0 \][/tex]
Substituting \(y = 0\) back, we see that it works only when \(y = 0\).
Therefore, after checking all the options, the correct solution for the equation \(2x + 3y = 5\) is:
[tex]\[ \boxed{x = \frac{-3y + 5}{2}} \][/tex]
1. Option 1: \(x = -3y + \frac{5}{2}\)
Substitute \(x = -3y + \frac{5}{2}\) into the original equation:
[tex]\[ 2(-3y + \frac{5}{2}) + 3y = 5 \][/tex]
Simplify inside the parentheses:
[tex]\[ 2(-3y) + 2 \cdot \frac{5}{2} + 3y = 5 \][/tex]
This becomes:
[tex]\[ -6y + 5 + 3y = 5 \][/tex]
Combine like terms:
[tex]\[ -3y + 5 = 5 \][/tex]
Subtract 5 from both sides:
[tex]\[ -3y = 0 \][/tex]
Divide by -3:
[tex]\[ y = 0 \][/tex]
Substituting \(y = 0\) back, we see that it works only when \(y = 0\).
2. Option 2: \(x = \frac{-3}{2}y + 5\)
Substitute \(x = \frac{-3}{2}y + 5\) into the original equation:
[tex]\[ 2\left(\frac{-3}{2}y + 5\right) + 3y = 5 \][/tex]
Simplify inside the parentheses:
[tex]\[ 2 \cdot \frac{-3}{2}y + 2 \cdot 5 + 3y = 5 \][/tex]
This becomes:
[tex]\[ -3y + 10 + 3y = 5 \][/tex]
Combine like terms:
[tex]\[ 10 \neq 5 \][/tex]
So, this option is incorrect.
3. Option 3: \(x = \frac{-3y + 5}{2}\)
Substitute \(x = \frac{-3y + 5}{2}\) into the original equation:
[tex]\[ 2\left(\frac{-3y + 5}{2}\right) + 3y = 5 \][/tex]
Simplify inside the parentheses:
[tex]\[ \frac{2(-3y + 5)}{2} + 3y = 5 \][/tex]
Which simplifies to:
[tex]\[ -3y + 5 + 3y = 5 \][/tex]
Combine like terms:
[tex]\[ 5 = 5 \][/tex]
This option satisfies the original equation, so it is correct.
4. Option 4: \(x = \frac{3y + 5}{2}\)
Substitute \(x = \frac{3y + 5}{2}\) into the original equation:
[tex]\[ 2\left(\frac{3y + 5}{2}\right) + 3y = 5 \][/tex]
Simplify inside the parentheses:
[tex]\[ \frac{2(3y + 5)}{2} + 3y = 5 \][/tex]
Which simplifies to:
[tex]\[ 3y + 5 + 3y = 5 \][/tex]
Combine like terms:
[tex]\[ 6y + 5 = 5 \][/tex]
Subtract 5 from both sides:
[tex]\[ 6y = 0 \][/tex]
Divide by 6:
[tex]\[ y = 0 \][/tex]
Substituting \(y = 0\) back, we see that it works only when \(y = 0\).
Therefore, after checking all the options, the correct solution for the equation \(2x + 3y = 5\) is:
[tex]\[ \boxed{x = \frac{-3y + 5}{2}} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.