Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which algebraic expressions are binomials, we need to check if each expression consists of exactly two terms. Let's analyze each expression one by one:
1. \( x y_{\sqrt{8}} \)
- This expression consists of a single term: \( x y^{\sqrt{8}} \).
- Since it is not composed of two distinct terms, it is not a binomial.
2. \( x^2 y - 3 x \)
- This expression has two distinct terms: \( x^2 y \) and \( -3 x \).
- So, it is a binomial.
3. \( 6 y^2 - y \)
- This expression has two distinct terms: \( 6 y^2 \) and \( -y \).
- Therefore, it is a binomial.
4. \( y^2 + \sqrt{v} \)
- This expression has two distinct terms: \( y^2 \) and \( \sqrt{v} \).
- Hence, it is a binomial.
5. \( 4 x y - \frac{2}{5} \)
- This expression has two distinct terms: \( 4 x y \) and \( -\frac{2}{5} \).
- Thus, it is a binomial.
6. \( x^2 + \frac{3}{x} \)
- This expression has two distinct terms: \( x^2 \) and \( \frac{3}{x} \).
- So, it is a binomial.
In summary, the expressions that are binomials are:
- \( x^2 y - 3 x \)
- \( 6 y^2 - y \)
- \( y^2 + \sqrt{v} \)
- \( 4 x y - \frac{2}{5} \)
- \( x^2 + \frac{3}{x} \)
So, the algebraic expressions that are binomials are:
[tex]\[ x^2 y - 3 x \][/tex]
[tex]\[ 6 y^2 - y \][/tex]
[tex]\[ y^2 + \sqrt{v} \][/tex]
[tex]\[ 4 x y - \frac{2}{5} \][/tex]
[tex]\[ x^2 + \frac{3}{x} \][/tex]
1. \( x y_{\sqrt{8}} \)
- This expression consists of a single term: \( x y^{\sqrt{8}} \).
- Since it is not composed of two distinct terms, it is not a binomial.
2. \( x^2 y - 3 x \)
- This expression has two distinct terms: \( x^2 y \) and \( -3 x \).
- So, it is a binomial.
3. \( 6 y^2 - y \)
- This expression has two distinct terms: \( 6 y^2 \) and \( -y \).
- Therefore, it is a binomial.
4. \( y^2 + \sqrt{v} \)
- This expression has two distinct terms: \( y^2 \) and \( \sqrt{v} \).
- Hence, it is a binomial.
5. \( 4 x y - \frac{2}{5} \)
- This expression has two distinct terms: \( 4 x y \) and \( -\frac{2}{5} \).
- Thus, it is a binomial.
6. \( x^2 + \frac{3}{x} \)
- This expression has two distinct terms: \( x^2 \) and \( \frac{3}{x} \).
- So, it is a binomial.
In summary, the expressions that are binomials are:
- \( x^2 y - 3 x \)
- \( 6 y^2 - y \)
- \( y^2 + \sqrt{v} \)
- \( 4 x y - \frac{2}{5} \)
- \( x^2 + \frac{3}{x} \)
So, the algebraic expressions that are binomials are:
[tex]\[ x^2 y - 3 x \][/tex]
[tex]\[ 6 y^2 - y \][/tex]
[tex]\[ y^2 + \sqrt{v} \][/tex]
[tex]\[ 4 x y - \frac{2}{5} \][/tex]
[tex]\[ x^2 + \frac{3}{x} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.