Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure! Let's solve the problem step-by-step.
We are given:
- The length \( L \) of the cylindrical pipe is 9 feet.
- The volume \( V \) of the cylindrical pipe is 100 cubic feet.
We need to find the approximate diameter of the pipe to the nearest hundredth of a foot.
To solve this, we use the formula for the volume of a cylinder:
[tex]\[ V = \pi r^2 L \][/tex]
where:
- \( V \) is the volume,
- \( r \) is the radius,
- \( L \) is the length,
- and \( \pi \) is a constant approximately equal to 3.14159.
First, let's rearrange this formula to solve for the radius \( r \):
[tex]\[ r^2 = \frac{V}{\pi L} \][/tex]
Given \( V = 100 \) cubic feet and \( L = 9 \) feet, we substitute these values into the formula:
[tex]\[ r^2 = \frac{100}{\pi \times 9} \][/tex]
Next, we compute the division inside the square root:
[tex]\[ r^2 = \frac{100}{28.27433} \approx 3.535 \][/tex]
Now, take the square root of both sides to solve for \( r \):
[tex]\[ r \approx \sqrt{3.535} \approx 1.881 \][/tex]
So the radius \( r \) is approximately 1.881 feet.
To find the diameter \( d \), we use the relationship between the radius and the diameter:
[tex]\[ d = 2r \][/tex]
Substituting the value we found for \( r \):
[tex]\[ d \approx 2 \times 1.881 \approx 3.761 \][/tex]
Finally, rounding this to the nearest hundredth of a foot, we get:
[tex]\[ d \approx 3.76 \][/tex]
Therefore, the approximate diameter of the cylindrical pipe is 3.76 feet.
We are given:
- The length \( L \) of the cylindrical pipe is 9 feet.
- The volume \( V \) of the cylindrical pipe is 100 cubic feet.
We need to find the approximate diameter of the pipe to the nearest hundredth of a foot.
To solve this, we use the formula for the volume of a cylinder:
[tex]\[ V = \pi r^2 L \][/tex]
where:
- \( V \) is the volume,
- \( r \) is the radius,
- \( L \) is the length,
- and \( \pi \) is a constant approximately equal to 3.14159.
First, let's rearrange this formula to solve for the radius \( r \):
[tex]\[ r^2 = \frac{V}{\pi L} \][/tex]
Given \( V = 100 \) cubic feet and \( L = 9 \) feet, we substitute these values into the formula:
[tex]\[ r^2 = \frac{100}{\pi \times 9} \][/tex]
Next, we compute the division inside the square root:
[tex]\[ r^2 = \frac{100}{28.27433} \approx 3.535 \][/tex]
Now, take the square root of both sides to solve for \( r \):
[tex]\[ r \approx \sqrt{3.535} \approx 1.881 \][/tex]
So the radius \( r \) is approximately 1.881 feet.
To find the diameter \( d \), we use the relationship between the radius and the diameter:
[tex]\[ d = 2r \][/tex]
Substituting the value we found for \( r \):
[tex]\[ d \approx 2 \times 1.881 \approx 3.761 \][/tex]
Finally, rounding this to the nearest hundredth of a foot, we get:
[tex]\[ d \approx 3.76 \][/tex]
Therefore, the approximate diameter of the cylindrical pipe is 3.76 feet.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.