Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To verify Aaron's calculations and identify his mistake, let's break down the problem step-by-step:
We are given the vectors:
[tex]\[ r = \langle 5, -1 \rangle, \][/tex]
[tex]\[ s = \langle 6, 0 \rangle, \][/tex]
[tex]\[ t = \langle -1, -3 \rangle. \][/tex]
We need to perform the following operations: \( 2r + 4s - 7t \).
### Step 1: Scale each vector
First, we scale each vector by their respective coefficients:
[tex]\[ 2r = 2 \times \langle 5, -1 \rangle = \langle 10, -2 \rangle, \][/tex]
[tex]\[ 4s = 4 \times \langle 6, 0 \rangle = \langle 24, 0 \rangle, \][/tex]
[tex]\[ 7t = 7 \times \langle -1, -3 \rangle = \langle -7, -21 \rangle. \][/tex]
### Step 2: Add and subtract the scaled vectors
Next, we add the scaled vectors \( 2r \) and \( 4s \):
[tex]\[ \langle 10, -2 \rangle + \langle 24, 0 \rangle = \langle 10 + 24, -2 + 0 \rangle = \langle 34, -2 \rangle. \][/tex]
Then, we subtract the vector \( 7t \) from the result:
[tex]\[ \langle 34, -2 \rangle - \langle -7, -21 \rangle = \langle 34 - (-7), -2 - (-21) \rangle = \langle 34 + 7, -2 + 21 \rangle = \langle 41, 19 \rangle. \][/tex]
### Review of Aaron's Calculation
Aaron determined:
[tex]\[ 2r + 4s - 7t = \langle 41, -23 \rangle. \][/tex]
Comparing this with our correct calculation:
[tex]\[ 2r + 4s - 7t = \langle 41, 19 \rangle. \][/tex]
We can see that Aaron's result for the y-component is incorrect.
### Error Analysis
Aaron made an error in his calculation:
- He added [tex]$\langle 10, -2 \rangle + \langle 24, 0 \rangle + \langle 7, -21 \rangle$[/tex] incorrectly.
- Specifically, he did not correctly distribute the negative sign when subtracting \( 7t \). Instead of subtracting \(\langle -7, -21 \rangle\), he effectively added it, causing the sign error in the y-component.
Therefore, the mistake is that he did not correctly distribute the negative when subtracting [tex]\( 7t \)[/tex].
We are given the vectors:
[tex]\[ r = \langle 5, -1 \rangle, \][/tex]
[tex]\[ s = \langle 6, 0 \rangle, \][/tex]
[tex]\[ t = \langle -1, -3 \rangle. \][/tex]
We need to perform the following operations: \( 2r + 4s - 7t \).
### Step 1: Scale each vector
First, we scale each vector by their respective coefficients:
[tex]\[ 2r = 2 \times \langle 5, -1 \rangle = \langle 10, -2 \rangle, \][/tex]
[tex]\[ 4s = 4 \times \langle 6, 0 \rangle = \langle 24, 0 \rangle, \][/tex]
[tex]\[ 7t = 7 \times \langle -1, -3 \rangle = \langle -7, -21 \rangle. \][/tex]
### Step 2: Add and subtract the scaled vectors
Next, we add the scaled vectors \( 2r \) and \( 4s \):
[tex]\[ \langle 10, -2 \rangle + \langle 24, 0 \rangle = \langle 10 + 24, -2 + 0 \rangle = \langle 34, -2 \rangle. \][/tex]
Then, we subtract the vector \( 7t \) from the result:
[tex]\[ \langle 34, -2 \rangle - \langle -7, -21 \rangle = \langle 34 - (-7), -2 - (-21) \rangle = \langle 34 + 7, -2 + 21 \rangle = \langle 41, 19 \rangle. \][/tex]
### Review of Aaron's Calculation
Aaron determined:
[tex]\[ 2r + 4s - 7t = \langle 41, -23 \rangle. \][/tex]
Comparing this with our correct calculation:
[tex]\[ 2r + 4s - 7t = \langle 41, 19 \rangle. \][/tex]
We can see that Aaron's result for the y-component is incorrect.
### Error Analysis
Aaron made an error in his calculation:
- He added [tex]$\langle 10, -2 \rangle + \langle 24, 0 \rangle + \langle 7, -21 \rangle$[/tex] incorrectly.
- Specifically, he did not correctly distribute the negative sign when subtracting \( 7t \). Instead of subtracting \(\langle -7, -21 \rangle\), he effectively added it, causing the sign error in the y-component.
Therefore, the mistake is that he did not correctly distribute the negative when subtracting [tex]\( 7t \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.