Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the domain and range of the function \( f(x) = \left(\frac{1}{6}\right)^x + 2 \), let's analyze each component step by step.
### Domain
1. Exponential Function Analysis:
- The function \( \left(\frac{1}{6}\right)^x \) is an exponential function with a base \( \left(\frac{1}{6}\right) \) which lies between 0 and 1. Exponential functions of the form \( a^x \), where \( 0 < a < 1 \), are defined for all real numbers \( x \).
2. Conclusion for Domain:
- There are no restrictions on \( x \) in the expression \( \left(\frac{1}{6}\right)^x \). Thus, the function \( f(x) \) is defined for all real numbers \( x \).
So, the domain of \( f(x) = \left(\frac{1}{6}\right)^x + 2 \) is:
[tex]\[ \{ x \mid x \text{ is a real number} \} \][/tex]
### Range
1. Original Exponential Function:
- Consider \( g(x) = \left(\frac{1}{6}\right)^x \). This function is always positive and approaches zero as \( x \) approaches positive infinity. As \( x \) decreases, \( \left(\frac{1}{6}\right)^x \) grows larger but still remains positive. Specifically, \( \left(\frac{1}{6}\right)^x > 0 \) for all real \( x \).
2. Adding a Constant:
- The given function \( f(x) \) adds 2 to the output of \( g(x) \). Therefore, for all \( x \):
[tex]\[ f(x) = \left(\frac{1}{6}\right)^x + 2 \][/tex]
Given \( \left(\frac{1}{6}\right)^x > 0 \), it follows that:
[tex]\[ f(x) = \left(\frac{1}{6}\right)^x + 2 > 0 + 2 \][/tex]
[tex]\[ f(x) > 2 \][/tex]
3. Conclusion for Range:
- The smallest value the function can approach is a value slightly greater than 2 (as \( \left(\frac{1}{6}\right)^x \) gets infinitesimally close to 0 but never reaches 0). Thus, \( f(x) > 2 \) for all \( x \).
So, the range of \( f(x) = \left(\frac{1}{6}\right)^x + 2 \) is:
[tex]\[ \{ y \mid y > 2 \} \][/tex]
### Correct Answer
Given the above analysis, the domain and range of the function \( f(x) = \left(\frac{1}{6}\right)^x + 2 \) are:
- Domain: \(\{ x \mid x \text{ is a real number} \}\)
- Range: \(\{ y \mid y > 2 \}\)
Therefore, the correct choice is:
[tex]\[ \{ x \mid x \text{ is a real number} \}; \text{ range: } \{ y \mid y > 2 \} \][/tex]
### Domain
1. Exponential Function Analysis:
- The function \( \left(\frac{1}{6}\right)^x \) is an exponential function with a base \( \left(\frac{1}{6}\right) \) which lies between 0 and 1. Exponential functions of the form \( a^x \), where \( 0 < a < 1 \), are defined for all real numbers \( x \).
2. Conclusion for Domain:
- There are no restrictions on \( x \) in the expression \( \left(\frac{1}{6}\right)^x \). Thus, the function \( f(x) \) is defined for all real numbers \( x \).
So, the domain of \( f(x) = \left(\frac{1}{6}\right)^x + 2 \) is:
[tex]\[ \{ x \mid x \text{ is a real number} \} \][/tex]
### Range
1. Original Exponential Function:
- Consider \( g(x) = \left(\frac{1}{6}\right)^x \). This function is always positive and approaches zero as \( x \) approaches positive infinity. As \( x \) decreases, \( \left(\frac{1}{6}\right)^x \) grows larger but still remains positive. Specifically, \( \left(\frac{1}{6}\right)^x > 0 \) for all real \( x \).
2. Adding a Constant:
- The given function \( f(x) \) adds 2 to the output of \( g(x) \). Therefore, for all \( x \):
[tex]\[ f(x) = \left(\frac{1}{6}\right)^x + 2 \][/tex]
Given \( \left(\frac{1}{6}\right)^x > 0 \), it follows that:
[tex]\[ f(x) = \left(\frac{1}{6}\right)^x + 2 > 0 + 2 \][/tex]
[tex]\[ f(x) > 2 \][/tex]
3. Conclusion for Range:
- The smallest value the function can approach is a value slightly greater than 2 (as \( \left(\frac{1}{6}\right)^x \) gets infinitesimally close to 0 but never reaches 0). Thus, \( f(x) > 2 \) for all \( x \).
So, the range of \( f(x) = \left(\frac{1}{6}\right)^x + 2 \) is:
[tex]\[ \{ y \mid y > 2 \} \][/tex]
### Correct Answer
Given the above analysis, the domain and range of the function \( f(x) = \left(\frac{1}{6}\right)^x + 2 \) are:
- Domain: \(\{ x \mid x \text{ is a real number} \}\)
- Range: \(\{ y \mid y > 2 \}\)
Therefore, the correct choice is:
[tex]\[ \{ x \mid x \text{ is a real number} \}; \text{ range: } \{ y \mid y > 2 \} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.