Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which function is a stretch of an exponential growth function, we need to evaluate the coefficients and bases of the given exponential functions. A function represents a stretch of an exponential growth function if it has both a coefficient greater than 1 and a base greater than 1.
Let's analyze each function:
1. \( f(x) = \frac{2}{3}\left(\frac{2}{3}\right)^x \)
- Coefficient: \(\frac{2}{3}\)
- Base: \(\frac{2}{3}\)
- Both the coefficient and the base are less than 1. Hence, this function does not represent a stretch of an exponential growth function.
2. \( f(x) = \frac{3}{2}\left(\frac{2}{3}\right)^x \)
- Coefficient: \(\frac{3}{2}\)
- Base: \(\frac{2}{3}\)
- The coefficient is greater than 1, but the base is less than 1. Thus, this function does not represent a stretch of an exponential growth function.
3. \( f(x) = \frac{3}{2}\left(\frac{3}{2}\right)^x \)
- Coefficient: \(\frac{3}{2}\)
- Base: \(\frac{3}{2}\)
- Both the coefficient and the base are greater than 1. Therefore, this function does represent a stretch of an exponential growth function.
4. \( f(x) = \frac{2}{3}\left(\frac{3}{2}\right)^x \)
- Coefficient: \(\frac{2}{3}\)
- Base: \(\frac{3}{2}\)
- The base is greater than 1, but the coefficient is less than 1. Hence, this function does not represent a stretch of an exponential growth function.
Based on the analysis above, the function that represents a stretch of an exponential growth function is:
[tex]\[ f(x) = \frac{3}{2}\left(\frac{3}{2}\right)^x \][/tex]
Therefore, the correct option is the third one.
Let's analyze each function:
1. \( f(x) = \frac{2}{3}\left(\frac{2}{3}\right)^x \)
- Coefficient: \(\frac{2}{3}\)
- Base: \(\frac{2}{3}\)
- Both the coefficient and the base are less than 1. Hence, this function does not represent a stretch of an exponential growth function.
2. \( f(x) = \frac{3}{2}\left(\frac{2}{3}\right)^x \)
- Coefficient: \(\frac{3}{2}\)
- Base: \(\frac{2}{3}\)
- The coefficient is greater than 1, but the base is less than 1. Thus, this function does not represent a stretch of an exponential growth function.
3. \( f(x) = \frac{3}{2}\left(\frac{3}{2}\right)^x \)
- Coefficient: \(\frac{3}{2}\)
- Base: \(\frac{3}{2}\)
- Both the coefficient and the base are greater than 1. Therefore, this function does represent a stretch of an exponential growth function.
4. \( f(x) = \frac{2}{3}\left(\frac{3}{2}\right)^x \)
- Coefficient: \(\frac{2}{3}\)
- Base: \(\frac{3}{2}\)
- The base is greater than 1, but the coefficient is less than 1. Hence, this function does not represent a stretch of an exponential growth function.
Based on the analysis above, the function that represents a stretch of an exponential growth function is:
[tex]\[ f(x) = \frac{3}{2}\left(\frac{3}{2}\right)^x \][/tex]
Therefore, the correct option is the third one.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.