Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Given the equation \( z^2 = \frac{1}{2} \left[ \cos \left( \frac{2\pi}{5} \right) + i \sin \left( \frac{2\pi}{5} \right) \right] \), we need to determine the point that represents the complex number \( z \).
First, let's rewrite the given complex number on the right-hand side in polar form:
[tex]\[ z^2 = \frac{1}{2} \left[ \cos \left( \frac{2\pi}{5} \right) + i \sin \left( \frac{2\pi}{5} \right) \right]. \][/tex]
1. We start by identifying the magnitude \( r \) and the angle \( \theta \) of the complex number:
- The magnitude of the right-hand side is \( \frac{1}{\sqrt{2}} \), since \( \left| \frac{1}{2} \right| = \frac{1}{2} \) and we take the square root of this magnitude to find \( |z| \).
- The angle \( \theta \) for this complex number is \( \frac{2\pi}{10} = \frac{\pi}{5} \), using the De Moivre's theorem.
2. Next, we find \( z \) by taking the square root of both sides. To do this, we use the fact that:
[tex]\[ z = \sqrt{\frac{1}{\sqrt{2}}} \left[ \cos \left( \frac{\pi}{5} \right) + i \sin \left( \frac{\pi}{5} \right) \right]. \][/tex]
3. Calculate the magnitude of \( z \):
[tex]\[ |z| = \left( \frac{1}{\sqrt{2}} \right)^{1/2} = \left( \frac{1}{2} \right)^{1/4} = \frac{1}{\sqrt[4]{2}}. \][/tex]
4. Determine the real and imaginary parts of \( z \) based on the angle \( \frac{\pi}{5} \):
[tex]\[ z = \frac{1}{\sqrt[4]{2}} \left[ \cos \left( \frac{\pi}{5} \right) + i \sin \left( \frac{\pi}{5} \right) \right]. \][/tex]
5. Plug the angle into the trigonometric functions and find the Cartesian coordinates:
- The real part is \( \frac{1}{\sqrt[4]{2}} \cos \left( \frac{\pi}{5} \right) \approx 0.572 \)
- The imaginary part is \( \frac{1}{\sqrt[4]{2}} \sin \left( \frac{\pi}{5} \right) \approx 0.416 \)
Therefore, the coordinates representing \( z \) are approximately:
[tex]\[ (0.572, 0.416). \][/tex]
So, the lettered point that corresponds to [tex]\( z \)[/tex] on the complex plane is the one with coordinates very close to [tex]\((0.572, 0.416)\)[/tex]. Identify the point that matches or closely matches this result.
First, let's rewrite the given complex number on the right-hand side in polar form:
[tex]\[ z^2 = \frac{1}{2} \left[ \cos \left( \frac{2\pi}{5} \right) + i \sin \left( \frac{2\pi}{5} \right) \right]. \][/tex]
1. We start by identifying the magnitude \( r \) and the angle \( \theta \) of the complex number:
- The magnitude of the right-hand side is \( \frac{1}{\sqrt{2}} \), since \( \left| \frac{1}{2} \right| = \frac{1}{2} \) and we take the square root of this magnitude to find \( |z| \).
- The angle \( \theta \) for this complex number is \( \frac{2\pi}{10} = \frac{\pi}{5} \), using the De Moivre's theorem.
2. Next, we find \( z \) by taking the square root of both sides. To do this, we use the fact that:
[tex]\[ z = \sqrt{\frac{1}{\sqrt{2}}} \left[ \cos \left( \frac{\pi}{5} \right) + i \sin \left( \frac{\pi}{5} \right) \right]. \][/tex]
3. Calculate the magnitude of \( z \):
[tex]\[ |z| = \left( \frac{1}{\sqrt{2}} \right)^{1/2} = \left( \frac{1}{2} \right)^{1/4} = \frac{1}{\sqrt[4]{2}}. \][/tex]
4. Determine the real and imaginary parts of \( z \) based on the angle \( \frac{\pi}{5} \):
[tex]\[ z = \frac{1}{\sqrt[4]{2}} \left[ \cos \left( \frac{\pi}{5} \right) + i \sin \left( \frac{\pi}{5} \right) \right]. \][/tex]
5. Plug the angle into the trigonometric functions and find the Cartesian coordinates:
- The real part is \( \frac{1}{\sqrt[4]{2}} \cos \left( \frac{\pi}{5} \right) \approx 0.572 \)
- The imaginary part is \( \frac{1}{\sqrt[4]{2}} \sin \left( \frac{\pi}{5} \right) \approx 0.416 \)
Therefore, the coordinates representing \( z \) are approximately:
[tex]\[ (0.572, 0.416). \][/tex]
So, the lettered point that corresponds to [tex]\( z \)[/tex] on the complex plane is the one with coordinates very close to [tex]\((0.572, 0.416)\)[/tex]. Identify the point that matches or closely matches this result.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.