Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the best estimate for the volume \( V \) when the pressure \( P \) is \( 7.0 \times 10^3 \) pascals, we can use linear interpolation between the given data points.
The given data points are:
[tex]\[ \begin{array}{|c|c|} \hline P \, (\text{pascals}) & V \, (\text{liters}) \\ \hline 5.0 \times 10^3 & 6.0 \\ 1.5 \times 10^4 & 3.0 \\ 2.0 \times 10^4 & 2.0 \\ 2.5 \times 10^4 & 1.5 \\ \hline \end{array} \][/tex]
We need to estimate the volume \( V \) when the pressure \( P \) is \( 7.0 \times 10^3 \) pascals.
1. Identify the interval in which \( 7.0 \times 10^3 \) pascals falls. That would be between \( 5.0 \times 10^3 \) and \( 1.5 \times 10^4 \) pascals.
2. Use the linear interpolation formula. For two points \((P_1, V_1)\) and \((P_2, V_2)\), the formula for interpolation is:
[tex]\[ V = V_1 + \frac{P - P_1}{P_2 - P_1} \times (V_2 - V_1) \][/tex]
3. Substitute the known values into the formula:
[tex]\[ V = 6.0 + \frac{7.0 \times 10^3 - 5.0 \times 10^3}{1.5 \times 10^4 - 5.0 \times 10^3} \times (3.0 - 6.0) \][/tex]
4. Simplify the values:
[tex]\[ V = 6.0 + \frac{2000}{10000} \times (-3.0) \][/tex]
[tex]\[ V = 6.0 + 0.2 \times (-3.0) \][/tex]
[tex]\[ V = 6.0 - 0.6 \][/tex]
[tex]\[ V = 5.4 \][/tex]
So, the best estimate for the value of \( V \) at \( P = 7.0 \times 10^3 \) pascals is \( 5.4 \) liters.
Therefore, the correct answer is [tex]\( \boxed{5.4 \text{ liters}} \)[/tex].
The given data points are:
[tex]\[ \begin{array}{|c|c|} \hline P \, (\text{pascals}) & V \, (\text{liters}) \\ \hline 5.0 \times 10^3 & 6.0 \\ 1.5 \times 10^4 & 3.0 \\ 2.0 \times 10^4 & 2.0 \\ 2.5 \times 10^4 & 1.5 \\ \hline \end{array} \][/tex]
We need to estimate the volume \( V \) when the pressure \( P \) is \( 7.0 \times 10^3 \) pascals.
1. Identify the interval in which \( 7.0 \times 10^3 \) pascals falls. That would be between \( 5.0 \times 10^3 \) and \( 1.5 \times 10^4 \) pascals.
2. Use the linear interpolation formula. For two points \((P_1, V_1)\) and \((P_2, V_2)\), the formula for interpolation is:
[tex]\[ V = V_1 + \frac{P - P_1}{P_2 - P_1} \times (V_2 - V_1) \][/tex]
3. Substitute the known values into the formula:
[tex]\[ V = 6.0 + \frac{7.0 \times 10^3 - 5.0 \times 10^3}{1.5 \times 10^4 - 5.0 \times 10^3} \times (3.0 - 6.0) \][/tex]
4. Simplify the values:
[tex]\[ V = 6.0 + \frac{2000}{10000} \times (-3.0) \][/tex]
[tex]\[ V = 6.0 + 0.2 \times (-3.0) \][/tex]
[tex]\[ V = 6.0 - 0.6 \][/tex]
[tex]\[ V = 5.4 \][/tex]
So, the best estimate for the value of \( V \) at \( P = 7.0 \times 10^3 \) pascals is \( 5.4 \) liters.
Therefore, the correct answer is [tex]\( \boxed{5.4 \text{ liters}} \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.