Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the equation of the line passing through the origin (0,0) and parallel to line \(AB\), we follow these steps:
1. Find the Slope of Line \(AB\):
The formula for the slope \(m\) between two points \((x_1, y_1)\) and \((x_2, y_2)\) is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here, the coordinates of points \(A\) and \(B\) are:
[tex]\[ A(-3, 0) \quad \text{and} \quad B(-6, 5) \][/tex]
Substituting these coordinates into the slope formula gives:
[tex]\[ m = \frac{5 - 0}{-6 - (-3)} = \frac{5}{-6 + 3} = \frac{5}{-3} = -\frac{5}{3} \][/tex]
2. Equation of the Line Parallel to \(AB\) Passing through the Origin:
Since the required line is parallel to line \(AB\), it will have the same slope \(-\frac{5}{3}\).
The general form of the equation of a line with slope \(m\) passing through the origin \((0,0)\) is:
[tex]\[ y = mx \][/tex]
Substituting \(m = -\frac{5}{3}\) into this equation gives:
[tex]\[ y = -\frac{5}{3} x \][/tex]
3. Convert to Standard Form \(ax + by + c = 0\):
To convert \(y = -\frac{5}{3} x\) into standard form, we can remove the fraction by multiplying all terms by 3:
[tex]\[ 3y = -5x \][/tex]
Rearranging the equation to the standard form \(ax + by + c = 0\) results in:
[tex]\[ 5x + 3y = 0 \][/tex]
4. Matching the Standard Form:
The equation is \(5x - 3y = 0\), which can be written as:
[tex]\[ 5x - 3y = 0 \][/tex]
This matches option A.
Therefore, the correct answer is:
[tex]\[ \boxed{5x - 3y = 0} \][/tex]
1. Find the Slope of Line \(AB\):
The formula for the slope \(m\) between two points \((x_1, y_1)\) and \((x_2, y_2)\) is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here, the coordinates of points \(A\) and \(B\) are:
[tex]\[ A(-3, 0) \quad \text{and} \quad B(-6, 5) \][/tex]
Substituting these coordinates into the slope formula gives:
[tex]\[ m = \frac{5 - 0}{-6 - (-3)} = \frac{5}{-6 + 3} = \frac{5}{-3} = -\frac{5}{3} \][/tex]
2. Equation of the Line Parallel to \(AB\) Passing through the Origin:
Since the required line is parallel to line \(AB\), it will have the same slope \(-\frac{5}{3}\).
The general form of the equation of a line with slope \(m\) passing through the origin \((0,0)\) is:
[tex]\[ y = mx \][/tex]
Substituting \(m = -\frac{5}{3}\) into this equation gives:
[tex]\[ y = -\frac{5}{3} x \][/tex]
3. Convert to Standard Form \(ax + by + c = 0\):
To convert \(y = -\frac{5}{3} x\) into standard form, we can remove the fraction by multiplying all terms by 3:
[tex]\[ 3y = -5x \][/tex]
Rearranging the equation to the standard form \(ax + by + c = 0\) results in:
[tex]\[ 5x + 3y = 0 \][/tex]
4. Matching the Standard Form:
The equation is \(5x - 3y = 0\), which can be written as:
[tex]\[ 5x - 3y = 0 \][/tex]
This matches option A.
Therefore, the correct answer is:
[tex]\[ \boxed{5x - 3y = 0} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.