Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To address this question, we need to use the dilution formula, which is given by:
[tex]\[ M_j V_j = M_f V_f \][/tex]
where:
- \( M_j \) is the initial concentration (or molarity) of the stock solution,
- \( V_j \) is the initial volume of the stock solution required,
- \( M_f \) is the final concentration (or molarity) of the desired solution,
- \( V_f \) is the final volume of the desired solution.
Given values:
- \( M_f = 2.50 \, M \) (final concentration)
- \( V_f = 50.0 \, mL \) (final volume)
- \( M_j = 18.0 \, M \) (initial concentration of the stock solution)
We need to find \( V_j \), the volume of the stock solution required.
Starting with the given formula:
[tex]\[ M_j V_j = M_f V_f \][/tex]
Plug in the known values:
[tex]\[ 18.0 \, M \times V_j = 2.50 \, M \times 50.0 \, mL \][/tex]
First, calculate the product on the right-hand side:
[tex]\[ 2.50 \, M \times 50.0 \, mL = 125.0 \, M \cdot mL \][/tex]
Now, solve for \( V_j \):
[tex]\[ V_j = \frac{125.0 \, M \cdot mL}{18.0 \, M} \][/tex]
[tex]\[ V_j \approx 6.944444444444445 \, mL \][/tex]
Thus, the volume of the stock solution required is approximately \( 6.94 \, mL \).
Among the options given, the best match for our calculation is:
[tex]\[ \boxed{6.94 \, mL} \][/tex]
[tex]\[ M_j V_j = M_f V_f \][/tex]
where:
- \( M_j \) is the initial concentration (or molarity) of the stock solution,
- \( V_j \) is the initial volume of the stock solution required,
- \( M_f \) is the final concentration (or molarity) of the desired solution,
- \( V_f \) is the final volume of the desired solution.
Given values:
- \( M_f = 2.50 \, M \) (final concentration)
- \( V_f = 50.0 \, mL \) (final volume)
- \( M_j = 18.0 \, M \) (initial concentration of the stock solution)
We need to find \( V_j \), the volume of the stock solution required.
Starting with the given formula:
[tex]\[ M_j V_j = M_f V_f \][/tex]
Plug in the known values:
[tex]\[ 18.0 \, M \times V_j = 2.50 \, M \times 50.0 \, mL \][/tex]
First, calculate the product on the right-hand side:
[tex]\[ 2.50 \, M \times 50.0 \, mL = 125.0 \, M \cdot mL \][/tex]
Now, solve for \( V_j \):
[tex]\[ V_j = \frac{125.0 \, M \cdot mL}{18.0 \, M} \][/tex]
[tex]\[ V_j \approx 6.944444444444445 \, mL \][/tex]
Thus, the volume of the stock solution required is approximately \( 6.94 \, mL \).
Among the options given, the best match for our calculation is:
[tex]\[ \boxed{6.94 \, mL} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.