Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the domain of the function \( y = \sqrt{x} + 4 \), we need to establish the set of all possible values for \( x \) that will make the function well-defined.
1. The function \( y \) consists of the square root of \( x \) plus 4.
2. To ensure that the square root is defined, the expression inside the square root, \( x \), must be non-negative. In other words, we require:
[tex]\[ x \geq 0 \][/tex]
By analyzing this condition, we can conclude that \( x \) needs to be greater than or equal to 0. This means that the variable \( x \) can take any value starting from 0 and extending to positive infinity.
Therefore, the domain of the function \( y = \sqrt{x} + 4 \) is:
[tex]\[ 0 \leq x < \infty \][/tex]
Among the given choices:
1. \(-\infty < x < \infty\) — Incorrect, as \( x \) cannot take negative values due to the square root.
2. \(-4 \leq x < \infty\) — Incorrect, as \( x \) starting from -4 does not make sense for a square root function.
3. \( 0 \leq x < \infty \) — Correct, as it matches the requirement for the square root function.
4. \( 4 \leq x < \infty \) — Incorrect, as it unnecessarily restricts \( x \) to start from 4.
Thus, the correct domain is \( 0 \leq x < \infty \), which corresponds to the third given option.
So, the answer is:
[tex]\[ \boxed{3} \][/tex]
1. The function \( y \) consists of the square root of \( x \) plus 4.
2. To ensure that the square root is defined, the expression inside the square root, \( x \), must be non-negative. In other words, we require:
[tex]\[ x \geq 0 \][/tex]
By analyzing this condition, we can conclude that \( x \) needs to be greater than or equal to 0. This means that the variable \( x \) can take any value starting from 0 and extending to positive infinity.
Therefore, the domain of the function \( y = \sqrt{x} + 4 \) is:
[tex]\[ 0 \leq x < \infty \][/tex]
Among the given choices:
1. \(-\infty < x < \infty\) — Incorrect, as \( x \) cannot take negative values due to the square root.
2. \(-4 \leq x < \infty\) — Incorrect, as \( x \) starting from -4 does not make sense for a square root function.
3. \( 0 \leq x < \infty \) — Correct, as it matches the requirement for the square root function.
4. \( 4 \leq x < \infty \) — Incorrect, as it unnecessarily restricts \( x \) to start from 4.
Thus, the correct domain is \( 0 \leq x < \infty \), which corresponds to the third given option.
So, the answer is:
[tex]\[ \boxed{3} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.