Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Of course! Let's solve this step by step.
1. Understand the Relationships:
- We're told that the resistance of a wire varies directly with its length and inversely with its cross-sectional area.
- Mathematically, we can express this relationship as [tex]\( R = k \frac{L}{A} \)[/tex], where [tex]\( R \)[/tex] is the resistance, [tex]\( L \)[/tex] is the length, [tex]\( A \)[/tex] is the cross-sectional area, and [tex]\( k \)[/tex] is a constant of proportionality.
2. Use Given Values to Determine the Constant [tex]\( k \)[/tex] for the Material:
- For the first wire:
- Length [tex]\( L_1 = 100 \)[/tex] meters
- Cross-sectional area [tex]\( A_1 = 1 \)[/tex] square millimeter
- Resistance [tex]\( R_1 = 2 \)[/tex] ohms
- Substitute these values into the relationship to find [tex]\( k \)[/tex]:
[tex]\[ 2 = k \frac{100}{1} \][/tex]
- Solving for [tex]\( k \)[/tex]:
[tex]\[ k = \frac{2 \times 1}{100} = 0.02 \][/tex]
3. Find the Resistance of the Second Wire Using the Same Constant [tex]\( k \)[/tex]:
- For the second wire:
- Length [tex]\( L_2 = 250 \)[/tex] meters
- Cross-sectional area [tex]\( A_2 = 0.5 \)[/tex] square millimeters
- Using the relationship [tex]\( R = k \frac{L}{A} \)[/tex]:
[tex]\[ R_2 = 0.02 \times \frac{250}{0.5} \][/tex]
4. Calculate the Resistance:
[tex]\[ R_2 = 0.02 \times \frac{250}{0.5} = 0.02 \times 500 = 10 \text{ ohms} \][/tex]
Therefore, the resistance of a wire of the same material that is 250 meters long with a cross-sectional area of 0.5 square millimeters would be 10 ohms.
1. Understand the Relationships:
- We're told that the resistance of a wire varies directly with its length and inversely with its cross-sectional area.
- Mathematically, we can express this relationship as [tex]\( R = k \frac{L}{A} \)[/tex], where [tex]\( R \)[/tex] is the resistance, [tex]\( L \)[/tex] is the length, [tex]\( A \)[/tex] is the cross-sectional area, and [tex]\( k \)[/tex] is a constant of proportionality.
2. Use Given Values to Determine the Constant [tex]\( k \)[/tex] for the Material:
- For the first wire:
- Length [tex]\( L_1 = 100 \)[/tex] meters
- Cross-sectional area [tex]\( A_1 = 1 \)[/tex] square millimeter
- Resistance [tex]\( R_1 = 2 \)[/tex] ohms
- Substitute these values into the relationship to find [tex]\( k \)[/tex]:
[tex]\[ 2 = k \frac{100}{1} \][/tex]
- Solving for [tex]\( k \)[/tex]:
[tex]\[ k = \frac{2 \times 1}{100} = 0.02 \][/tex]
3. Find the Resistance of the Second Wire Using the Same Constant [tex]\( k \)[/tex]:
- For the second wire:
- Length [tex]\( L_2 = 250 \)[/tex] meters
- Cross-sectional area [tex]\( A_2 = 0.5 \)[/tex] square millimeters
- Using the relationship [tex]\( R = k \frac{L}{A} \)[/tex]:
[tex]\[ R_2 = 0.02 \times \frac{250}{0.5} \][/tex]
4. Calculate the Resistance:
[tex]\[ R_2 = 0.02 \times \frac{250}{0.5} = 0.02 \times 500 = 10 \text{ ohms} \][/tex]
Therefore, the resistance of a wire of the same material that is 250 meters long with a cross-sectional area of 0.5 square millimeters would be 10 ohms.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.