Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's determine if [tex]\(x = \frac{1}{2}\)[/tex] is a zero of the polynomial [tex]\(p(x) = 2x + 1\)[/tex].
### Step-by-Step Solution:
1. Identify the polynomial:
The given polynomial is:
[tex]\[ p(x) = 2x + 1 \][/tex]
2. Substitute the given value [tex]\(x = \frac{1}{2}\)[/tex] into the polynomial:
To find out if [tex]\(x = \frac{1}{2}\)[/tex] is a zero of the polynomial, we need to substitute [tex]\(x = \frac{1}{2}\)[/tex] into the equation and see if the result is zero.
Let's do the substitution:
[tex]\[ p\left(\frac{1}{2}\right) = 2 \left(\frac{1}{2}\right) + 1 \][/tex]
3. Simplify the expression:
Simplify the right-hand side of the equation step-by-step:
[tex]\[ 2 \left(\frac{1}{2}\right) = 1 \][/tex]
Now, add the remaining term:
[tex]\[ 1 + 1 = 2 \][/tex]
4. Evaluate the polynomial:
After substituting [tex]\(x = \frac{1}{2}\)[/tex], we get:
[tex]\[ p\left(\frac{1}{2}\right) = 2 \][/tex]
5. Determine if the result is zero:
A zero of the polynomial [tex]\(p(x) = 2x + 1\)[/tex] would ensure that:
[tex]\[ p(x) = 0 \][/tex]
However, we found that:
[tex]\[ p\left(\frac{1}{2}\right) = 2 \][/tex]
### Conclusion:
Since [tex]\(p\left(\frac{1}{2}\right) = 2\)[/tex] and not zero, we can conclude that [tex]\(x = \frac{1}{2}\)[/tex] is not a zero of the polynomial [tex]\(p(x) = 2x + 1\)[/tex].
So, the answer is:
[tex]\[ p\left(\frac{1}{2}\right) = 2 \quad \text{and} \quad \frac{1}{2} \text{ is not a zero of the polynomial.} \][/tex]
### Step-by-Step Solution:
1. Identify the polynomial:
The given polynomial is:
[tex]\[ p(x) = 2x + 1 \][/tex]
2. Substitute the given value [tex]\(x = \frac{1}{2}\)[/tex] into the polynomial:
To find out if [tex]\(x = \frac{1}{2}\)[/tex] is a zero of the polynomial, we need to substitute [tex]\(x = \frac{1}{2}\)[/tex] into the equation and see if the result is zero.
Let's do the substitution:
[tex]\[ p\left(\frac{1}{2}\right) = 2 \left(\frac{1}{2}\right) + 1 \][/tex]
3. Simplify the expression:
Simplify the right-hand side of the equation step-by-step:
[tex]\[ 2 \left(\frac{1}{2}\right) = 1 \][/tex]
Now, add the remaining term:
[tex]\[ 1 + 1 = 2 \][/tex]
4. Evaluate the polynomial:
After substituting [tex]\(x = \frac{1}{2}\)[/tex], we get:
[tex]\[ p\left(\frac{1}{2}\right) = 2 \][/tex]
5. Determine if the result is zero:
A zero of the polynomial [tex]\(p(x) = 2x + 1\)[/tex] would ensure that:
[tex]\[ p(x) = 0 \][/tex]
However, we found that:
[tex]\[ p\left(\frac{1}{2}\right) = 2 \][/tex]
### Conclusion:
Since [tex]\(p\left(\frac{1}{2}\right) = 2\)[/tex] and not zero, we can conclude that [tex]\(x = \frac{1}{2}\)[/tex] is not a zero of the polynomial [tex]\(p(x) = 2x + 1\)[/tex].
So, the answer is:
[tex]\[ p\left(\frac{1}{2}\right) = 2 \quad \text{and} \quad \frac{1}{2} \text{ is not a zero of the polynomial.} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.