Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the nature of the reaction [tex]\(I_2(s) \rightarrow I_2(g)\)[/tex] at [tex]\(500 \, \text{K}\)[/tex], we will use the Gibbs free energy change ([tex]\(\Delta G\)[/tex]) as our main criterion. The given data includes:
- [tex]\(\Delta H = 62.4 \, \text{kJ/mol}\)[/tex] (enthalpy change)
- [tex]\(\Delta S = 0.145 \, \text{kJ/(mol·K)}\)[/tex] (entropy change)
- [tex]\(T = 500 \, \text{K}\)[/tex] (temperature)
The formula to calculate the Gibbs free energy change is:
[tex]\[ \Delta G = \Delta H - T\Delta S \][/tex]
Substitute the given values into the formula:
[tex]\[ \Delta G = 62.4 \, \text{kJ/mol} - 500 \, \text{K} \times 0.145 \, \text{kJ/(mol·K)} \][/tex]
Perform the calculation step-by-step:
1. Calculate the term [tex]\(T \Delta S\)[/tex]:
[tex]\[ 500 \, \text{K} \times 0.145 \, \text{kJ/(mol·K)} = 72.5 \, \text{kJ/mol} \][/tex]
2. Subtract this from [tex]\(\Delta H\)[/tex]:
[tex]\[ \Delta G = 62.4 \, \text{kJ/mol} - 72.5 \, \text{kJ/mol} \][/tex]
3. Complete the subtraction:
[tex]\[ \Delta G = 62.4 - 72.5 = -10.1 \, \text{kJ/mol} \][/tex]
Since [tex]\(\Delta G\)[/tex] is negative ([tex]\(\Delta G = -10.1 \, \text{kJ/mol}\)[/tex]), this indicates that the reaction is spontaneous at [tex]\(500 \, \text{K}\)[/tex].
Using the provided choices:
A. Its entropy decreases - This is incorrect. Given [tex]\(\Delta S = 0.145 \, \text{kJ/(mol·K)}\)[/tex], the entropy increases.
B. It is spontaneous - This is correct because [tex]\(\Delta G\)[/tex] is negative.
C. It proceeds rapidly - Gibbs free energy does not give information about the reaction rate.
D. It is exothermic - This is incorrect. Since [tex]\(\Delta H = 62.4 \, \text{kJ/mol}\)[/tex] is positive, the reaction is endothermic.
Thus, the correct answer is:
B. It is spontaneous.
- [tex]\(\Delta H = 62.4 \, \text{kJ/mol}\)[/tex] (enthalpy change)
- [tex]\(\Delta S = 0.145 \, \text{kJ/(mol·K)}\)[/tex] (entropy change)
- [tex]\(T = 500 \, \text{K}\)[/tex] (temperature)
The formula to calculate the Gibbs free energy change is:
[tex]\[ \Delta G = \Delta H - T\Delta S \][/tex]
Substitute the given values into the formula:
[tex]\[ \Delta G = 62.4 \, \text{kJ/mol} - 500 \, \text{K} \times 0.145 \, \text{kJ/(mol·K)} \][/tex]
Perform the calculation step-by-step:
1. Calculate the term [tex]\(T \Delta S\)[/tex]:
[tex]\[ 500 \, \text{K} \times 0.145 \, \text{kJ/(mol·K)} = 72.5 \, \text{kJ/mol} \][/tex]
2. Subtract this from [tex]\(\Delta H\)[/tex]:
[tex]\[ \Delta G = 62.4 \, \text{kJ/mol} - 72.5 \, \text{kJ/mol} \][/tex]
3. Complete the subtraction:
[tex]\[ \Delta G = 62.4 - 72.5 = -10.1 \, \text{kJ/mol} \][/tex]
Since [tex]\(\Delta G\)[/tex] is negative ([tex]\(\Delta G = -10.1 \, \text{kJ/mol}\)[/tex]), this indicates that the reaction is spontaneous at [tex]\(500 \, \text{K}\)[/tex].
Using the provided choices:
A. Its entropy decreases - This is incorrect. Given [tex]\(\Delta S = 0.145 \, \text{kJ/(mol·K)}\)[/tex], the entropy increases.
B. It is spontaneous - This is correct because [tex]\(\Delta G\)[/tex] is negative.
C. It proceeds rapidly - Gibbs free energy does not give information about the reaction rate.
D. It is exothermic - This is incorrect. Since [tex]\(\Delta H = 62.4 \, \text{kJ/mol}\)[/tex] is positive, the reaction is endothermic.
Thus, the correct answer is:
B. It is spontaneous.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.