Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Which choice includes two pairs of adjacent angles from the coordinate plane?

A. [tex]$\angle 1$[/tex] and [tex]$\angle 4, \angle 2$[/tex] and [tex]$\angle 5$[/tex]

B. [tex]$\angle 6$[/tex] and [tex]$\angle 5, \angle 3$[/tex] and [tex]$\angle 2$[/tex]

C. [tex]$\angle 6$[/tex] and [tex]$\angle 4, \angle 1$[/tex] and [tex]$\angle 4$[/tex]

D. [tex]$\angle 4$[/tex] and [tex]$\angle 5, \angle 2$[/tex] and [tex]$\angle 16$[/tex]


Sagot :

To determine which choice includes two pairs of adjacent angles from the coordinate plane, consider the geometric definition of adjacent angles. Adjacent angles share a common side and a common vertex, but they do not overlap.

Let's analyze each choice:

1. [tex]$\angle 1$[/tex] and [tex]$\angle 4, \angle 2$[/tex] and [tex]$\angle 5$[/tex]

To verify if these are pairs of adjacent angles:
- [tex]$\angle 1$[/tex] and [tex]$\angle 4$[/tex]: These angles must share a common side and vertex.
- [tex]$\angle 2$[/tex] and [tex]$\angle 5$[/tex]: These angles must share a common side and vertex.

2. [tex]$\angle 6$[/tex] and [tex]$\angle 5, \angle 3$[/tex] and [tex]$\angle 2$[/tex]

To verify if these are pairs of adjacent angles:
- [tex]$\angle 6$[/tex] and [tex]$\angle 5$[/tex]: These angles must share a common side and vertex.
- [tex]$\angle 3$[/tex] and [tex]$\angle 2$[/tex]: These angles must share a common side and vertex.

3. [tex]$\angle 6$[/tex] and [tex]$\angle 4, \angle 11$[/tex] and [tex]$\angle 4$[/tex]

To verify if these are pairs of adjacent angles:
- [tex]$\angle 6$[/tex] and [tex]$\angle 4$[/tex]: These angles must share a common side and vertex.
- [tex]$\angle 11$[/tex] and [tex]$\angle 4$[/tex]: These angles must share a common side and vertex.

4. [tex]$\angle 4$[/tex] and [tex]$\angle 5, \angle 2$[/tex] and [tex]$\angle 16$[/tex]

To verify if these are pairs of adjacent angles:
- [tex]$\angle 4$[/tex] and [tex]$\angle 5$[/tex]: These angles must share a common side and vertex.
- [tex]$\angle 2$[/tex] and [tex]$\angle 16$[/tex]: These angles must share a common side and vertex.

The choice [tex]$\angle 1$[/tex] and [tex]$\angle 4, \angle 2$[/tex] and [tex]$\angle 5$[/tex] includes two pairs of adjacent angles.