Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's determine the expected frequency for individuals with Blonde Hair and Blue Eyes based on the given data. We'll follow these steps:
1. Calculate the Marginal Totals:
- Calculate the total number of individuals with Blonde Hair:
- Blonde Hair Total = 25 (Blue) + 27 (Green) + 31 (Brown) = 83
- Calculate the total number of individuals with Blue Eyes:
- Blue Eyes Total = 25 (Blonde) + 26 (Brown) = 51
- Calculate the grand total of all individuals:
- Grand Total = (25 + 27 + 31) (Blonde) + (26 + 18 + 22) (Brown) = 149
2. Expected Frequency Calculation:
- The expected frequency for any cell in a contingency table is computed as:
[tex]\[ \text{Expected Frequency} = \frac{(\text{Row Total} \times \text{Column Total})}{\text{Grand Total}} \][/tex]
- For Blonde Hair and Blue Eyes, we need:
[tex]\[ \text{Expected Frequency of Blonde Hair and Blue Eyes} = \frac{(\text{Total Blonde Hair} \times \text{Total Blue Eyes})}{\text{Grand Total}} \][/tex]
- Plugging in the values we have:
[tex]\[ \text{Expected Frequency of Blonde Hair and Blue Eyes} = \frac{(83 \times 51)}{149} \][/tex]
3. Perform the Multiplication and Division:
- Compute the value:
[tex]\[ \text{Expected Frequency of Blonde Hair and Blue Eyes} = \frac{4233}{149} \approx 28.41 \][/tex]
Thus, the expected frequency of Blonde Hair and Blue Eyes is approximately 28.41.
1. Calculate the Marginal Totals:
- Calculate the total number of individuals with Blonde Hair:
- Blonde Hair Total = 25 (Blue) + 27 (Green) + 31 (Brown) = 83
- Calculate the total number of individuals with Blue Eyes:
- Blue Eyes Total = 25 (Blonde) + 26 (Brown) = 51
- Calculate the grand total of all individuals:
- Grand Total = (25 + 27 + 31) (Blonde) + (26 + 18 + 22) (Brown) = 149
2. Expected Frequency Calculation:
- The expected frequency for any cell in a contingency table is computed as:
[tex]\[ \text{Expected Frequency} = \frac{(\text{Row Total} \times \text{Column Total})}{\text{Grand Total}} \][/tex]
- For Blonde Hair and Blue Eyes, we need:
[tex]\[ \text{Expected Frequency of Blonde Hair and Blue Eyes} = \frac{(\text{Total Blonde Hair} \times \text{Total Blue Eyes})}{\text{Grand Total}} \][/tex]
- Plugging in the values we have:
[tex]\[ \text{Expected Frequency of Blonde Hair and Blue Eyes} = \frac{(83 \times 51)}{149} \][/tex]
3. Perform the Multiplication and Division:
- Compute the value:
[tex]\[ \text{Expected Frequency of Blonde Hair and Blue Eyes} = \frac{4233}{149} \approx 28.41 \][/tex]
Thus, the expected frequency of Blonde Hair and Blue Eyes is approximately 28.41.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.