Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the standard error of the sample mean using the given weights of the students, we need to follow these steps:
1. Calculate the Sample Mean ([tex]\( \bar{x} \)[/tex]):
To find the sample mean, sum up all the weights and divide by the number of students.
[tex]\[ \bar{x} = \frac{128 + 193 + 166 + 147 + 202 + 183 + 181 + 158}{8} \][/tex]
Simplifying this calculation, we get:
[tex]\[ \bar{x} = \frac{1358}{8} = 169.75 \][/tex]
2. Calculate the Sample Standard Deviation (s):
The sample standard deviation measures the amount of variation or dispersion of a set of values. The formula for sample standard deviation is:
[tex]\[ s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} \][/tex]
where [tex]\( x_i \)[/tex] represents each individual weight, [tex]\( \bar{x} \)[/tex] is the sample mean, and [tex]\( n \)[/tex] is the sample size.
Substituting the values, we get:
[tex]\[ s \approx 24.77 \][/tex]
3. Calculate the Sample Size (n):
In this case, the sample size [tex]\( n \)[/tex] is the number of students. There are 8 students.
[tex]\[ n = 8 \][/tex]
4. Calculate the Standard Error of the Sample Mean (SE):
The standard error of the sample mean is given by the formula:
[tex]\[ SE = \frac{s}{\sqrt{n}} \][/tex]
Substituting [tex]\( s = 24.77 \)[/tex] and [tex]\( n = 8 \)[/tex], we get:
[tex]\[ SE = \frac{24.77}{\sqrt{8}} \][/tex]
[tex]\[ SE \approx \frac{24.77}{2.83} \approx 8.76 \][/tex]
Therefore, the standard error of the sample mean, rounded to the hundredths place, is 8.76.
1. Calculate the Sample Mean ([tex]\( \bar{x} \)[/tex]):
To find the sample mean, sum up all the weights and divide by the number of students.
[tex]\[ \bar{x} = \frac{128 + 193 + 166 + 147 + 202 + 183 + 181 + 158}{8} \][/tex]
Simplifying this calculation, we get:
[tex]\[ \bar{x} = \frac{1358}{8} = 169.75 \][/tex]
2. Calculate the Sample Standard Deviation (s):
The sample standard deviation measures the amount of variation or dispersion of a set of values. The formula for sample standard deviation is:
[tex]\[ s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} \][/tex]
where [tex]\( x_i \)[/tex] represents each individual weight, [tex]\( \bar{x} \)[/tex] is the sample mean, and [tex]\( n \)[/tex] is the sample size.
Substituting the values, we get:
[tex]\[ s \approx 24.77 \][/tex]
3. Calculate the Sample Size (n):
In this case, the sample size [tex]\( n \)[/tex] is the number of students. There are 8 students.
[tex]\[ n = 8 \][/tex]
4. Calculate the Standard Error of the Sample Mean (SE):
The standard error of the sample mean is given by the formula:
[tex]\[ SE = \frac{s}{\sqrt{n}} \][/tex]
Substituting [tex]\( s = 24.77 \)[/tex] and [tex]\( n = 8 \)[/tex], we get:
[tex]\[ SE = \frac{24.77}{\sqrt{8}} \][/tex]
[tex]\[ SE \approx \frac{24.77}{2.83} \approx 8.76 \][/tex]
Therefore, the standard error of the sample mean, rounded to the hundredths place, is 8.76.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.