Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure! Let's differentiate the function [tex]\( y = \ln(e^x + x e^x) \)[/tex].
To find [tex]\( y' \)[/tex], we'll need to use the chain rule and the properties of logarithms and exponential functions.
1. Identify the inner function:
[tex]\[ u = e^x + x e^x \][/tex]
2. Differentiate the natural logarithm:
According to the chain rule:
[tex]\[ y = \ln(u) \implies \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]
3. Differentiate the inner function [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ u = e^x + x e^x \][/tex]
Using the product rule for [tex]\( x e^x \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx}(e^x) + \frac{d}{dx}(x e^x) \][/tex]
The derivative of [tex]\( e^x \)[/tex] is [tex]\( e^x \)[/tex]:
[tex]\[ \frac{d}{dx}(e^x) = e^x \][/tex]
To differentiate [tex]\( x e^x \)[/tex], use the product rule:
[tex]\[ \frac{d}{dx}(x e^x) = x \frac{d}{dx}(e^x) + e^x \frac{d}{dx}(x) = x e^x + e^x \][/tex]
Combining these results:
[tex]\[ \frac{du}{dx} = e^x + (x e^x + e^x) = e^x + x e^x + e^x = x e^x + 2e^x \][/tex]
4. Substitute [tex]\( \frac{du}{dx} \)[/tex] and [tex]\( u \)[/tex] into the chain rule expression:
[tex]\[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{1}{e^x + x e^x} \cdot (x e^x + 2 e^x) \][/tex]
5. Simplify the expression:
[tex]\[ \frac{dy}{dx} = \frac{x e^x + 2 e^x}{e^x + x e^x} \][/tex]
Orthogonalizing terms we get:
[tex]\[ \frac{dy}{dx} = \frac{(x + 2) e^x}{(x + 1) e^x} \][/tex]
6. Cancel out the common [tex]\( e^x \)[/tex] factor in the numerator and the denominator:
[tex]\[ \frac{dy}{dx} = \frac{x + 2}{x + 1} \][/tex]
Hence, the derivative of the function [tex]\( y = \ln(e^x + x e^x) \)[/tex] is:
[tex]\[ y' = \frac{x e^x + 2 e^x}{x e^x + e^x} \][/tex]
To find [tex]\( y' \)[/tex], we'll need to use the chain rule and the properties of logarithms and exponential functions.
1. Identify the inner function:
[tex]\[ u = e^x + x e^x \][/tex]
2. Differentiate the natural logarithm:
According to the chain rule:
[tex]\[ y = \ln(u) \implies \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]
3. Differentiate the inner function [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ u = e^x + x e^x \][/tex]
Using the product rule for [tex]\( x e^x \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx}(e^x) + \frac{d}{dx}(x e^x) \][/tex]
The derivative of [tex]\( e^x \)[/tex] is [tex]\( e^x \)[/tex]:
[tex]\[ \frac{d}{dx}(e^x) = e^x \][/tex]
To differentiate [tex]\( x e^x \)[/tex], use the product rule:
[tex]\[ \frac{d}{dx}(x e^x) = x \frac{d}{dx}(e^x) + e^x \frac{d}{dx}(x) = x e^x + e^x \][/tex]
Combining these results:
[tex]\[ \frac{du}{dx} = e^x + (x e^x + e^x) = e^x + x e^x + e^x = x e^x + 2e^x \][/tex]
4. Substitute [tex]\( \frac{du}{dx} \)[/tex] and [tex]\( u \)[/tex] into the chain rule expression:
[tex]\[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{1}{e^x + x e^x} \cdot (x e^x + 2 e^x) \][/tex]
5. Simplify the expression:
[tex]\[ \frac{dy}{dx} = \frac{x e^x + 2 e^x}{e^x + x e^x} \][/tex]
Orthogonalizing terms we get:
[tex]\[ \frac{dy}{dx} = \frac{(x + 2) e^x}{(x + 1) e^x} \][/tex]
6. Cancel out the common [tex]\( e^x \)[/tex] factor in the numerator and the denominator:
[tex]\[ \frac{dy}{dx} = \frac{x + 2}{x + 1} \][/tex]
Hence, the derivative of the function [tex]\( y = \ln(e^x + x e^x) \)[/tex] is:
[tex]\[ y' = \frac{x e^x + 2 e^x}{x e^x + e^x} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.