Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the value of the discriminant for the given quadratic equation [tex]\( x^2 - 4x + 5 = 0 \)[/tex] and analyze the number of real solutions, let's proceed step by step.
### Step 1: Identify the coefficients
The standard form of a quadratic equation is:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
For the given equation [tex]\( x^2 - 4x + 5 = 0 \)[/tex], the coefficients are:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = -4 \)[/tex]
- [tex]\( c = 5 \)[/tex]
### Step 2: Compute the discriminant
The discriminant [tex]\( \Delta \)[/tex] of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Now substitute the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ \Delta = (-4)^2 - 4 \cdot 1 \cdot 5 \][/tex]
[tex]\[ \Delta = 16 - 20 \][/tex]
[tex]\[ \Delta = -4 \][/tex]
### Step 3: Interpret the discriminant
The discriminant tells us the nature of the roots (real or complex) of the quadratic equation:
- If [tex]\( \Delta > 0 \)[/tex], the equation has two distinct real solutions.
- If [tex]\( \Delta = 0 \)[/tex], the equation has exactly one real solution (a repeated root).
- If [tex]\( \Delta < 0 \)[/tex], the equation has no real solutions, but two complex solutions.
Since [tex]\( \Delta = -4 \)[/tex] and [tex]\( -4 < 0 \)[/tex], this indicates that the quadratic equation [tex]\( x^2 - 4x + 5 = 0 \)[/tex] has no real solutions. Instead, it will have two complex solutions.
### Conclusion
Given the computed discriminant and its interpretation:
Option 2 is correct:
"The discriminant is -4, so the equation has no real solutions."
### Step 1: Identify the coefficients
The standard form of a quadratic equation is:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
For the given equation [tex]\( x^2 - 4x + 5 = 0 \)[/tex], the coefficients are:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = -4 \)[/tex]
- [tex]\( c = 5 \)[/tex]
### Step 2: Compute the discriminant
The discriminant [tex]\( \Delta \)[/tex] of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Now substitute the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ \Delta = (-4)^2 - 4 \cdot 1 \cdot 5 \][/tex]
[tex]\[ \Delta = 16 - 20 \][/tex]
[tex]\[ \Delta = -4 \][/tex]
### Step 3: Interpret the discriminant
The discriminant tells us the nature of the roots (real or complex) of the quadratic equation:
- If [tex]\( \Delta > 0 \)[/tex], the equation has two distinct real solutions.
- If [tex]\( \Delta = 0 \)[/tex], the equation has exactly one real solution (a repeated root).
- If [tex]\( \Delta < 0 \)[/tex], the equation has no real solutions, but two complex solutions.
Since [tex]\( \Delta = -4 \)[/tex] and [tex]\( -4 < 0 \)[/tex], this indicates that the quadratic equation [tex]\( x^2 - 4x + 5 = 0 \)[/tex] has no real solutions. Instead, it will have two complex solutions.
### Conclusion
Given the computed discriminant and its interpretation:
Option 2 is correct:
"The discriminant is -4, so the equation has no real solutions."
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.